Working with Exponents

Multiplying terms

When multiplying expression raised to powers, add exponents, like below:

 $x^a x^b = x^{a+b}.$

Here are some examples:

1.
$$x^2x^5 = x^7$$

2. $y^3y^9 = y^{12}$
3. $2^5 \cdot 2^6 = 2^{11}$
4. $2^x \cdot 2^3 = 2^{x+3}$
5. $x \cdot \sqrt{x} = x \cdot x^{1/2} = x^{3/2}$

Dividing terms

When dividing, subtract exponents, like below:

 $\frac{x^a}{x^b} = x^{a-b}.$

Here are some examples:

1.
$$\frac{x^8}{x^5} = x^3$$

2. $\frac{a^2}{a^6} = a^{-4}$ or $\frac{1}{a^4}$

Raising powers to powers

When raising a power to a power, multiply exponents, like below:

$$(x^a)^b = x^{ab}.$$

Here are some examples:

1. $(x^3)^5 = x^{15}$. 2. $\sqrt{x^5} = (x^5)^{1/2} = x^{5/2}$

3.
$$(2^x)^4 = 2^{4x}$$

Minor technicality: We do need to be a little careful when square roots are involved. For instance $\sqrt{x^2}$ can be rewritten as $(x^2)^{1/2}$, which seems like it should equal x, but if x is negative, then that's not quite the case. The rule here is $\sqrt{x^2}$ equals x if x is positive and -x if x is negative. Sometimes this is written as $\sqrt{x^2} = |x|$.

Breaking things up

A very common algebraic operation with powers is to break things up. The rules are

$$(xy)^n = x^n y^n \qquad \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}.$$

Here are a few examples:

1.
$$(xy)^2 = x^2 y^2$$

2. $\left(\frac{x}{y}\right)^4 = \frac{x^4}{y^4}$
3. $(5x^3)^2 = 5^2 \cdot (x^3)^2 = 25x^6$
4. $\sqrt{5x} = \sqrt{5}\sqrt{x}$

5.
$$\sqrt[3]{\frac{x^3}{8}} = \frac{\sqrt[3]{x^3}}{\sqrt[3]{8}} = \frac{x}{2}$$

Odds and ends

Here are a few further useful tricks:

- 1. Sometimes it's helpful to use the rules in reverse. For instance, we know $x \cdot x^4 = x^5$. So we could flip things and take x^5 and break it up into $x \cdot x^4$.
- 2. Sometimes we will want to move something into a root. For instance, $2\sqrt{x} = \sqrt{4y}$ or $x\sqrt{y} = \sqrt{x^2y}$ (for $x \ge 0$).

Exercises

- 1. Write the following as x^{\Box} where \Box is filled in with a single number.
 - (a) $x^{3}x^{9}$ (b) $\frac{x^{12}}{x^{4}}$ (c) $(x^{3})^{5}$

(d)
$$\left(\frac{x^3}{x^5}\right)$$

(e) $x\sqrt[3]{x}$

- 2. Show that the following are true:
 - (a) $(4x^2)^3 = 64x^6$
 - (b) $\sqrt{9x^2} = 3x$ (for x > 0)

(c)
$$\left(\frac{x^3}{9}\right)^2 = \frac{x^6}{81}$$

- 3. What number fills in the box in $x^{27} = (x^3)^{\square}$?
- 4. What number fills in the box in $x^{27} = x^{\Box} x^{25}$?
- 5. Rewrite $x^2 \sqrt[3]{y}$ so that everything is under the radical.

Answers

1. (a)
$$x^3 x^9 = x^{3+9} = x^{12}$$

(b) $\frac{x^{12}}{x^4} = x^{12-4} = x^8$
(c) $(x^3)^5 = x^{3\cdot 5} = x^{15}$
(d) $\left(\frac{x^3}{x^5}\right)^2 = (x^{-2})^2 = x^{-4}$
(e) $x\sqrt[3]{x} = x \cdot x^{1/3} = x^{1+1/3} = x^{4/3}$ or $\sqrt[3]{x^4}$

2. (a)
$$(4x^2)^3 = 4^3(x^2)^3 = 64x^6$$

(b) $\sqrt{9x^2} = \sqrt{9}\sqrt{x^2} = 3x$ (for $x > 0$)
(c) $\left(\frac{x^3}{9}\right)^2 = \frac{(x^3)^2}{9^2} = \frac{x^6}{81}$

- 3. 9 because $(x^3)^9 = x^{3 \cdot 9} = x^{27}$.
- 4. 2 because $x^2 x^{25} = x^{2+25} = x^{27}$.
- 5. Rewrite x^2 as $\sqrt[3]{x^6}$ and then combine the radicals to get $\sqrt[3]{x^6y}$.