Solving Quadratic Equations

Quadratic equations can be solved in a number of ways, including basic algebra and factoring. When in doubt, though, the quadratic formula always works, even if it is a little tedious to use. The quadratic formula says that the solutions to $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Here are several examples of solving quadratics.

Example 1 Solve $x^2 - 9 = 0$ for x.

Solution: If a quadratic has an x^2 term but no x term, like this one, then get the x term alone and take a square root. Here we get $x^2 = 9$, and then $x = \pm \sqrt{9}$ or $x = \pm 3$.

The \pm is important, since $\sqrt{9}$ only stands for the positive root 3. But both x = -3 and x = 3 work in the equation.

Example 2 Solve $16 - 2x^2 = 0$ for *x*.

Solution: Get the x^2 term alone on one side by adding $2x^2$ to both sides and then dividing by 2 to get $x^2 = 8$. Then take the square root of both sides to get $x = \pm \sqrt{8}$.

Example 3 Solve $x^2 + 5x - 6 = 0$ for *x*.

Solution: If a quadratic is easy to factor, then that gives a quick solution. In this case, we can factor $x^2 + 5x + 6 = 0$ into (x - 1)(x + 6) = 0. Therefore, the solutions are x = 1 and x = -6.

Example 4 Solve $x^2 - 7x = 0$ for x.

Solution: Factor this into x(x-7) = 0. Then the solutions are x = 0 and x = 7.

Note that if the equation were $x^2 - 7x = 1$, this would not work. It only works if the right side is 0.

Example 5 Solve $3x^2 + 9x - 5 = 0$ for *x*.

Solution: If a quadratic is not easily factorable (or if you hate factoring), then use quadratic formula. In this case a = 3, b = 9, and c = -5. Plugging into the formula gives

$$x = \frac{-9 \pm \sqrt{9^2 - (4)(3)(-5)}}{(2)(3)} = \frac{-9 \pm \sqrt{141}}{6}.$$

Example 6 Solve $x^2 + 8 = 0$ for x.

Solution: Sometimes equations have no solution. This is one of those times. Subtracting 8 from both sides gives $x^2 = -8$. However, you can't square a number and get a negative, so there is no solution. The equation does have solutions involving imaginary numbers, but in calculus we don't use those.

Exercises

Solve the following equations for x.

1.
$$x^{2} - 16 = 0$$

2. $7 - x^{2} = 0$
3. $(x - 1)^{2} = 16$
4. $x^{2} - 6x - 7 = 0$
5. $x^{2} + 9x - 1 = 0$

Answers

- 1. Add 16 to both sides to get $x^2 = 16$. Take the square root of both sides to get $x = \pm 4$. Alternately, factor the left side into (x 4)(x + 4) and set those to equal to 0 separately to get the $x = \pm 4$.
- 2. Add x^2 to both sides to get $x^2 = 7$. Then take the square root of both sides to get $x = \sqrt{7}$.
- 3. Take the square root of both sides to get $x 1 = \pm 4$. That is, x 1 = 4 and x 1 = -4. Solve these to get x = 5 and x = -3.
- 4. Factor it into (x-7)(x+1). So we have x-7=0 and x+1=0, giving x=7 and x=-1.
- 5. This can't be factored. Use the quadratic formula to get $x = \frac{-9 \pm \sqrt{9^2 4(1)(-1)}}{2(1)} = \frac{-9 \pm \sqrt{85}}{2}$.