The meaning of exponents

Here are some useful things to know:

- Positive whole number powers indicate repeated multiplication. For instance x^2 means $x \cdot x$ and x^3 means $x \cdot x \cdot x$. And x^1 is the same as x.
- Raising something to the power of 0 always gives 1 (except that 0^0 is undefined).
- Negative powers correspond to powers in the denominator of a fraction. For instance, x^{-2} means $\frac{1}{x^2}$ and x^{-1} means $\frac{1}{x}$.
- Fractional powers correspond to taking square roots, cube roots, etc. For instance, $x^{1/2}$ or $x^{.5}$ are equivalent to \sqrt{x} .

Similarly, $x^{1/3}$ is $\sqrt[3]{x}$. This corresponds to a value that if cubed equals x. For instance, $\sqrt[3]{8}$ is 2 because $2 \cdot 2 \cdot 2$ is 8.

• Occasionally, you'll see something like $x^{2/5}$. This is a combination of a root and a power; in particular, it's $\sqrt[5]{x^2}$ or equivalently, $(\sqrt[5]{x})^2$. Similarly, $x^{4/7}$ is $\sqrt[7]{x^4}$ or $(\sqrt[7]{x})^4$.

Exercises

- 1. Rewrite $x \cdot x \cdot x \cdot x$ as an expression involving exponents.
- 2. Rewrite the following in the form x^{\Box} , where the box is filled in with a numerical exponent.
 - (a) $\frac{1}{x^5}$
 - (b) $\sqrt[4]{x}$
 - (c) $\frac{1}{\sqrt{x}}$
 - (d) $\sqrt[4]{x^3}$
- 3. Rewrite x^{-8} as a fraction.
- 4. Rewrite $x^{2/5}$ as an expression involving a radical symbol.

Answers

1.
$$x \cdot x \cdot x \cdot x = x^4$$

2. (a) $\frac{1}{x^5} = x^{-5}$
(b) $\sqrt[4]{x} = x^{1/4}$
(c) $\frac{1}{\sqrt{x}} = x^{-1/2}$
(d) $\sqrt[4]{x^3} = x^{3/4}$
3. $x^{-8} = \frac{1}{x^8}$

4.
$$x^{2/5} = \sqrt[5]{x^2}$$
 or $(\sqrt[5]{x})^2$