Functions

A function takes inputs and transforms them according to some rule into outputs. Many calculus functions are given by formulas like $f(x) = x^2$ or g(x) = 2x + 3.

Evaluating functions

Much of the time, evaluating a function means plugging a value into the function. For instance, if $f(x) = x^2$, then f(4) is gotten by plugging 4 into the formula to get $f(4) = 4^2 = 16$.

Sometimes it is useful to plug in things other than numbers. Here are some examples using $f(x) = x^2$

1.
$$f(a) = a^2$$

2. $f(x+h) = (x+h)^2$

Addition, subtraction, etc. of functions

Sometimes when given two functions f(x) and g(x), people will use the notation (f + g)(x) to denote f(x) + g(x). The idea is that (f + g)(x) represents a new function gotten from adding two other functions. For instance, if $f(x) = x^2$ and g(x) = 2x + 3, then $(f + g)(x) = x^2 + 2x + 3$.

The notations (f - g)(x), (fg)(x) and (f/g)(x) are defined similarly.

Function composition

Function composition is the important idea of taking the output from one function and plugging it into another. Given two functions f(x) and g(x), the notation for the composition is $(f \circ g)(x)$. Often this is written as f(g(x)). Here are a couple of examples.

1. If $f(x) = x^2$ and g(x) = 2x + 3, then

$$(f \circ g)(x) = f(g(x)) = f(2x+3) = (2x+3)^2.$$

2. If $f(x) = \frac{1}{x}$ and $g(x) = \sqrt{x}$, then

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = \frac{1}{\sqrt{x}}.$$

3. If $f(x) = x^2 + 1$ and g(x) = 4x, and we want to know $(f \circ g)(3)$, we do the following:

$$(f \circ g)(3) = f(g(3)) = f(4 \cdot 3) = f(12) = 145$$

Exercises

- 1. For the following, find f(4) and f(x+h).
 - (a) f(x) = 2x + 3
 - (b) $f(x) = \sqrt{x}$
- 2. For the following, find (f+g)(x), (fg)(x), and $(f \circ g)$.
 - (a) $f(x) = x^3, g(x) = 1 + x$
 - (b) $f(x) = x^2 + 1, g(x) = \sqrt{x}$

Answers

1. (a) f(4) = 2(4) + 3 = 11 and f(x = h) = 2(x + h) + 3(b) $f(4) = \sqrt{4} = 2$ and $f(x+h) = \sqrt{x+h}$

2. (a)
$$(f+g)(x) = x^3 + 1 + x$$
, $(fg)(x) = x^3(1+x)$, and $(f \circ g)(x) = f(g(x)) = (1+x)^3$
(b) $(f+g)(x) = x^2 + 1 + \sqrt{x}$, $(fg)(x) = (x^2 + 1)\sqrt{x}$, and $(f \circ g)(x) = f(g(x)) = \sqrt{x^2 + 1}$.

(b)
$$(f+g)(x) = x^2 + 1 + \sqrt{x}, (fg)(x) = (x^2 + 1)\sqrt{x}, \text{ and } (f \circ g)(x) = f(g(x)) = \sqrt{x^2} + 1 = x + 1.$$