Domain and range

Domain

The domain of a function is the set of values that you can plug into the function. Often what is most interesting about the domain is not what you can plug in to a function, but what you can't.

To find the domain, think about things that are not allowed: dividing by 0 and taking square roots of a negative number. Usually in calculus, the places these happen are not in the domain and everything else is.

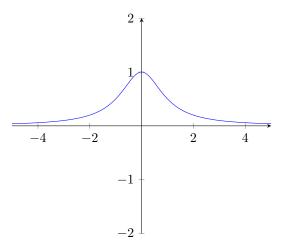
Here are a few examples:

- 1. If $f(x) = \frac{1}{x}$, you can plug in any number except 0. So the domain is all real numbers except 0. People often write this as $(-\infty, 0) \cup (0, \infty)$
- 2. To find the domain of $f(x) = \frac{x^2+1}{x^2-1}$, look at where the denominator is 0. So set $x^2 1 = 0$ and solve to get x = 1 and -1. So domain is all real numbers except -1 and 1.
- 3. If $f(x) = \sqrt{x}$, you can only plug in positive numbers or 0. Negatives are not allowed. So the domain is all nonnegative real numbers, or $[0, \infty)$
- 4. If $f(x) = \sqrt{x-3}$, we are okay as long as we don't have a negative in the radical. This means that $x-3 \ge 0$, so $x \ge 3$. So the domain is all values of x greater than or equal to 3, or $[3, \infty)$
- 5. If $f(x) = x^2 + 3x + 9$, the domain is all real numbers. There is nothing that can go wrong by plugging in a real number. In fact, the domain of any polynomial is all real numbers.

Range

The range of a function is all the possible outputs. When looking at the graph, it's all the possible y-values. Here are a few examples:

- 1. The range of $f(x) = x^2$ is all nonnegative real numbers, or $[0, \infty)$. When squaring a number we can't get a negative, but we can get any positive number or 0.
- 2. The range of $f(x) = \frac{1}{x^2 + 1}$ is (0, 1] as can be seen from the graph below.



The peak of the function occurs at x = 1 and it has a horizontal asymptote at y = 0. The function never quite reaches 0.

3. The range of f(x) = x is all real numbers. Every real number is a possible output.

Exercises

1. Find the domain of the following functions.

(a)
$$f(x) = \frac{x}{x-3}$$

(b) $f(x) = \frac{2+x}{x^2+4x-5}$
(c) $f(x) = \sqrt{2-x}$
(d) $f(x) = \sqrt{x^2+1}$
(e) $f(x) = x^4 + 4x^3 + 3x^2 + 2x + 9$

2. Find the range of the following functions.

(a)
$$f(x) = x^3$$

(b) $f(x) = \frac{1}{x^2}$

Answers

- 1. (a) The only thing that could go wrong with this function is if the denominator is 0. That happens when x 3 = 0, which is when x = 3. So the domain is all real numbers except 3. $f(x) = \frac{x}{x 3}$
 - (b) The only thing that could go wrong with this function is if the denominator is 0. That happens when $x^2 + 4x 5 = 0$. Factoring the left side, we get (x + 5)(x 1). Setting these equal to 0 gives x + 5 = 0 and x 1 = 0, which then gives x = -5 and x = 1. The domain is all real numbers except -5 and 1.
 - (c) The expression under the radical needs to be positive. Thus we need $2 x \ge 0$, which means $2 \ge x$ or $x \le 2$. So the domain is all real numbers less than or equal to 2.
 - (d) The expression under the radical needs to be positive. However, that expression, $x^2 + 1$, is always positive, so there are no problems for this function. It is defined for all real numbers.
 - (e) There is nothing that can go wrong with this function. It is a polynomial. So the domain is all real numbers.
- 2. (a) The range is all real numbers. Every real number is the cube of some other number, namely it's cube root.
 - (b) The range is all positive real numbers. Because x^2 and 1 are both positive, it is impossible to get a negative out of this, and setting $1/x^2 = 0$ gives 1 = 0, so the function can never be 0. On the other, hand, any positive number is a possible output of this function. In particular, for any positive number r, if we take $x = 1/\sqrt{r}$, then $1/x^2 = r$.