
1

Topological sort

One particularly important class of directed graphs are directed acyclic graphs, or DAGs. These are digraphs that
contains no directed cycles; they are basically the digraph equivalent of trees1. The underlying graph of a DAG
might not look like a tree, like the one shown below on the left, but when we take into account orientations, it
behaves just like one.

e

fb

a

d g

c e f g d a b c

The key property of DAGs is that we can order their vertices in such a way that there are never any backward
edges, edges directed from a vertex later in the ordering back to a vertex earlier in the ordering. For example, in
the graph above on the left, if we arrange its vertices in the order e, f , g, d, a, b, c, as shown on the right, we
see that edges are always directed from left to right. This type of ordering is called a topological ordering.

This is important, for example, in scheduling. We often want to know which tasks need to be done before which
other tasks. In a DAG, we can order the tasks so that a task’s prerequisites are always completed before the task
itself. For example,at Mount St. Mary’s, certain CS classes need to be taken before others. For instance, CMSCI
120 Introduction to Computer Science I must be taken before CMSCI 125 Introduction to Computer Science II.
We can make a DAG to represent courses and prerequisites by making the vertices be courses and using edges to
indicate a course is a prerequisite for another. A digraph showing a few of the CS courses is shown below.

120 125 254

256

277

228

453

There is nice algorithm that finds topological orderings, called a topological sort. Recall that the degree of a
vertex is the number of edges it is involved with. In a directed graph, the indegree of a vertex is the number of
edges pointing into the vertex. Here is the basic idea of the topological sort: a vertex that has indegree 0 only
has edges out from it. Therefore, it can safely go at the beginning of the ordering. Then delete that vertex (and
all of its edges) and find another vertex of indegree 0. Put that vertex next in the order, delete it, and repeat
until all vertices have been ordered. Here are the first three steps of the algorithm on the DAG above.

e

fb

a

d g

c

fb

a

d g

c

b

a

d g

c

1More properly, they are equivalent to forests, which are graphs whose components are trees (i.e., graphs that have no cycles and may or
may not be connected).



2

After this, d, a, b, and c are removed, in that order, giving us a topological ordering of e, f , g, d, a, b, c. Note
that if there are multiple vertices of indegree 0, we can pick any one of them. There can be many possible
topological orderings.

Will this always work? Since at every stage we choose a vertex v of indegree 0 in the graph that remains, we are
guaranteed that no vertices that come later in the order can have edges directed backwards toward v. But then
the main problem would seem to be that there might be no vertex of indegree 0 available. However, this is not
the case. A DAG must always have a vertex of indegree 0. To see why, suppose there were no vertices of indegree
0. Start at any vertex v1. It has indegree greater than 0, so there must be some edge v2→ v1. Similarly v2 has
indegree greater than 0, so there is some edge v3→ v2. We can keep doing this, but since the digraph has a finite
number of vertices, we must eventually reach a vertex we have already reached, creating a directed cycle. But
this a directed acyclic graph, so there can’t be any cycles, and we have a contradiction. Note also that removing
vertices from a DAG can’t add any cycles, so at every step of the topological sort we are working with a DAG.

Below is some code that performs a topological sort.

from collections import defaultdict

class Digraph(dict):
def add(self, v):

self[v] = set()
def add_edge(self, u, v):

self[u].add(v)

def topo_sort(D):
d = defaultdict(int)
for x in D:

for v in D[x]:
d[v] += 1

queue = [x for x in D if d[x]==0]
order = []
while len(queue) > 0 :

x = queue.pop(0)
order.append(x)

for v in D[x]:
d[v] -= 1
if d[v] == 0:

queue.append(v)

return [] if len(order) < len(D) else order

The job of the first part of the function is to create a dictionary whose keys are the vertices of the graph and
whose values are counts of edges pointing into each vertex (its indegree). The code does this using a useful
Python object called a defaultdict. The default part of defaultdict is that the initial count will default to 0.
We could do this with just an ordinary dictionary, but it would be a little messier.

After we build the dictionary, we create a queue that consists of all the vertices with indegree 0. We loop until
we run out of vertices of indegree 0. At each iteration, we pop the first thing off of the queue, add it to the
topological order, and then remove that vertex from the digraph. We don’t physically remove it, but instead we
simulate removing it by adjusting the indegrees of all its neighbors down by 1. This process might create some
new indegree 0 vertices, which are added to the queue. The algorithm ends when we’re out of indegree 0
verices. If we didn’t end up adding all the vertices of the digraph into the topological order, then the graph must
not have been a DAG, and we return an empty list. Otherwise, we return the topological order.


