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Sorting

Sorting is worth studying for a few reasons: (1) it’s one of the fundamental parts of computer science that
computer scientists are expected to be familiar with, (2) ideas used in some of the algorithms are useful
elsewhere, and (3) there are some sorting algorithms that can, in some special cases, outperform the sorting
methods built into programming languages. We’ll start by looking at how to use some of the more advanced
features of those built-in sorting methods.

Sorting in Python

If you have a list L in Python, you can use L.sort() to sort it. Another option is to use sorted(L). The difference
is that the former will change L, while the latter will return a new sorted copy of L. To sort a list in reverse order,
use L.sort(reverse=True). This and other keyword arguments also work with the sorted function.

Sorting by a special criterion By default, sorting will put numbers in numerical order and strings in
alphabetical order. Sometimes you want to sort by a different criterion, called a key. In Python, the key keyword
argument is used for that. For instance, to sort a list of strings by length, so that they are organized from
shortest to longest, use L.sort(key=len). The argument to the key function will be a function that tells how the
sorting is to be done. If we want to sort a list of strings by how many of the letter z they contain, we could do
the following:

def num_z(s):
return s.count('z')

L = ['zoo', 'buzz', 'pizazz', 'pizza', 'cat', 'zzzzz!', 'computer']
print(sorted(L, key=num_z))

There is a one-line shortcut for the above:

print(sorted(L, key=lambda s:s.count('z')))

This uses the lambda keyword, which is a way to create an anonymous function. The idea is that the z-counting
function is not something we need anywhere except as a sorting key, so there is no need to go through the
trouble of creating a full function. Instead, Python’s lambda keyword allows us to create an unnamed function
and put it directly into the call to the sorting function.

I personally use sorting by a key most often for sorting tuples. Suppose we have a list of tuples like
[(4,5), (2,3), (1,9), (2,6), (7,1), (8,2)]. Sorting this list without a key will sort it by the first item in
each tuple, with ties being broken by moving to the second item and further if necessary for larger tuples.
Sometimes, it is helpful to sort by a different entry. To sort a list L by the second entry (index 1 of the tuple), we
can use the line below. The sorting key is the value of the item at index 1 of the tuple.

L.sort(key=lambda t:t[1])

Here how to sort the keys of a dictionary by their corresponding values:

sorted(d, key=d.get)

You can also use key=lambda x:d[x] for the key function above. Finally, we can sort a list of objects according
to one of the fields in the objects. For instance, if the objects all have a field called age, then the following will
sort based on that:

L.sort(key = lambda x:x.age)
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Sorting in Java

There is an array sorting method in java.util.Arrays. Here is an example of it:

int[] a = {3,9,4,1,3,2};
Arrays.sort(a);

When working with lists, one approach is Collections.sort. Here is an example:

List<Integer> list = new ArrayList<Integer>();
Collections.addAll(list, 3,9,4,1,3,2);
Collections.sort(list);

In Java 8 and later, lists have a sorting method, as shown below:

List<Integer> list = new ArrayList<Integer>();
Collections.addAll(list, 3,9,4,1,3,2);
list.sort();

Sorting by a special criterion Sometimes, we have objects that we want to sort according to a certain rule.
For example, it is sometimes useful to sort strings by length rather than alphabetically. In Java 7 and earlier, the
syntax for these things is a little complicated. Here is the old way to sort an array of strings by length:

Collections.sort(list, new Comparator<String>() {
public int compare(String s, String t) {

return s.length() - t.length(); }});

This uses something called a Comparator. The key part of it is a function that tells how to do the comparison.
That function works like the compareTo method of the Comparable interface in that it returns a negative, 0, or
positive depending on whether the first argument is less than, equal to, or greater than the second argument.
The example above uses an anonymous class. It is possible, but usually unnecessary, to create a separate,
standalone Comparator class. Things are much easier in Java 8. Here is code to sort a list of strings by length:

list.sort((s,t) -> s.length() - t.length());

In place of an entire anonymous Comparator class, Java 8 allows you to specify an anonymous function. It
basically cuts through all the syntax to get to just the part of the Comparator’s compare function that shows how
to do the comparison.

Say we have a class called Record that has a field called age, and we want to sort a list of records by age. We
could use the following:

Collections.sort(list, new Comparator<Record>() {
public int compare(Record r1, Record r2) {

return r1.age - r2.age; }});

In Java 8 and later, we can do the following:

list.sort((r1, r2) -> r1.age - r2.age);

If we have a getter written for the age, we could also do the following:

list.sort(Comparator.comparing(Record::getAge));

Suppose we want to sort by a more complicated criterion, like by last name and then by first name. The
following is one way to do things:

Collections.sort(list, new Comparator<Record>() {
public int compare(Record r1, Record r2) {

if (!r1.lastName.equals(r2.lastName))
return r1.lastName.compareTo(r2.lastName);

else
return r1.firstName.compareTo(r2.firstName); }});

In Java 8 and later, we can use the following:

list.sort(Comparator.comparing(Record::getLastName).thenComparing(Record::getFirstName));
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Uses for sorting

Here is a list of some places sorting can be helpful:

• Once a list is sorted, certain algorithms become faster. For instance, we can use a fast binary search
instead of a slow linear search once the list is sorted. This speed gain needs to be balanced with the fact
that sorting the list takes time. However, if you’re planning to do many searches, then it makes sense to
sort the list once at the start.

• Finding the largest and smallest things in a sorted list is easy, as is finding the second-largest, the median
(middle value), and many other things.

• A common task is to determine if a list has repeats. If the list is already sorted, a quick way to do that is to
loop over the list and see if any pair of elements next to each other are equal. This runs in O(n) time. An
alternate approach is to convert the list to a set and see if the list and set have the same length. This is can
be done by checking if len(L) == len(set(L)) in Python. This is slower than the loop approach
described above, but it is quicker to code.

• Finding the two closest things together in a list can be done similarly to the above. Once the list is sorted,
the two closest things together will be next to each other in the list.

Insertion sort

Insertion sort is an O(n2) algorithm that is possibly the fastest common sorting algorithm for small lists of up to
maybe a few dozen elements. For large lists, other algorithms are much faster. Insertion sort is also a very good
sort for lists that are already almost in sorted order.

To understand the basic idea, suppose we have a stack of papers we want to put into in alphabetical order. We
could start by putting the first two papers in order. Then we could put the third paper where it fits in order with
the other two. Then we could put the fourth paper where it fits in order with the first three. If we keep doing
this, we have what is essentially insertion sort.

To do insertion sort on an array, we loop over the indices of the array running from 1 to the end of the array. For
each index, we take the element at that index and loop back through the array towards the front, looking for
where the element belongs among the earlier elements. These elements are in sorted order (having been placed
in order by the previous steps), so to find the location we run the loop until we find an element that is smaller
than the one we or looking at or fall off the front of the array. The figure below shows it in action.

D C E B G F A

C D E B G F A

C D E B G F A

B C D E G F A

B C D E G F A

B C D E F G A

A B C D E F G

Below is code for insertion sort in Python. This code will sort the caller’s list instead of making a separate copy
and sorting that. It’s not hard to modify the code to make a copy if that’s what you want.
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def insertion_sort(L):
for i in range(1, len(L)):

current_val = L[i]
j = i
while j > 0 and current_val < L[j-1]:

L[j] = L[j-1]
j -= 1

L[j] = current_val

We see the nested loops in the code above, showing that insertion sort is O(n2) in the worst case. That worst
case would be a list in reverse sorted order. Insertion sort turns out to be O(n2) in the average case as well. The
best case for insertion sort is if the list is already sorted. In that case, the inner loop never runs, and it’s O(n). If
the list is mostly sorted except for a few elements a little out of place, we are close to this best case, and the
running time is still pretty good.

Mergesort

Mergesort is a widely used sort that runs in O(n log n) time for all inputs. A variation of it called Timsort is the
sorting algorithm used by Python and by some Java library functions.

Mergesort works as follows: We break the array into two halves, sort them, and then merge them together. The
halves themselves are sorted with mergesort, making this is a recursive algorithm. For instance, say we want to
sort the string CEIGJBFDHA. We break it up into two halves, CEIGJ and BFDHA. We then sort those halves (using
mergesort) to get CEGIJ and ABDFH and merge the sorted halves back together to get ABCDEFGHIJ. See the
figure below:

C E I G J B F D H A

C E I G J B F D H A

C E G I J A B D F H

A B C D E F G H I J

cut in half

sort sort

recombine

The way the merging process works is we have position markers (counters) for each of the two halves, each
initially at the starts of their corresponding halves. We compare the values at the markers, choose the smaller of
the two, and advance the corresponding marker. We repeat the process until we reach the end of one of the
halves. After that, we append any remaining items from the other half to the end. The first few steps are shown
below:
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∧
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Below is one way to code mergesort in Python. It uses the merge function built into Python in the heapq library.

def mergesort(L):
if len(L) <= 1:

return

left = L[:len(L)//2]
right = L[len(L)//2:]

mergesort(left)
mergesort(right)

for i,x in enumerate(merge(left, right)):
L[i] = x

Mergesort is naturally coded recursively. The base case to stop the recursion is lists of length 0 or 1, which don’t
need to be sorted. We then break the list into its left and right halves, mergesort those, and then merge the
result back together. The enumerate function is just a way to have a loop that gets both the index and the item
at once from looping over the object returned by the merge function. If we really want to see how mergesort
works, without relying on Python’s merge function, below is a different approach.

def mergesort(L):
mergesort_helper(L, [None]*len(L), 0, len(L))

def mergesort_helper(L, M, left, right):
# Base case to end the recursion
if right-left <= 1:

return

# Recursive breakdown
mid = (left + right) // 2
mergesort_helper(L, M, left, mid)
mergesort_helper(L, M, mid, right)

# Make a copy of L into M
for i in range(left, right):

M[i] = L[i]

# Merging code
x, y, z = left, mid, left
while x < mid and y < right:

if M[x] < M[y]:
L[z] = M[x]
x += 1

else:
L[z] = M[y]
y += 1

z += 1

while x < mid:
L[z] = M[x]
x += 1
z += 1

while y < right:
L[z] = M[y]
y += 1
z += 1

The merging process could be coded in a simpler way, but it would end up being slow due to a bunch of new
lists being continually created to help with the moving. The code above creates a single separate array M and
uses that as a sort of workspace for moving things around in the merging process. Because of this, we end up
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needing to add M and two other variables as parameters to the recursive method. These extra parameters change
how the user would call the function, so we use a helper function.

The basic idea behind why the running time is O(n log n) is that there are log n recursive steps that cut the list in
half at every step, and each of those uses a O(n) merging operation. This can be formally proved using a tool
called the master theorem. There are no best or worst cases for mergesort. It always takes more or less the same
amount of time, regardless of how the elements of the list are ordered. Timsort, mentioned earlier, is a
combination of mergesort and insertion sort. It is coded to take advantage of runs of sorted items in the list,
which often occur in real-world data.

Quicksort Quicksort is one of the fastest sorting algorithms. It is built into a number of programming
languages. Like mergesort, it works by breaking the array into two subarrays, sorting them and then
recombining.

Quicksort first picks an element of the array to serve as a pivot. For simplicity, we will use the first element.
Quicksort then breaks the array into the portion that consists of all the elements less than or equal to the pivot
and the portion that consists of all the elements greater than the pivot. For instance, if we are sorting
CEIGJBFDHA, then the pivot is C, and the two portions are BA (everything less than the pivot) and EIGJFDH
(everything greater than the pivot).

We then sort the two portions using quicksort again, making this a recursive algorithm. Finally, we combine the
portions. Because we know that all the things in the one portion are less than or equal to the pivot and all the
things in the other portion are greater than the pivot, putting things together is quick. See the figure below:

C E I G J B F D H A
pivot

B A E I G J F D H

A B D E F G H I J

A B C D E F G H I J

break up

sort sort

recombine

Notice that the way quicksort breaks up the array is more complicated than the way mergesort does, but then
quicksort has an easier time putting things back together than mergesort does. Here is one way to implement
quicksort, coded to return a new list instead of modifying the caller’s list.

def quicksort(L):
if len(L) <= 1:

return L[:]
smaller = [x for x in L[1:] if x <= L[0]]
greater = [x for x in L[1:] if x > L[0]]
return quicksort(smaller) + [L[0]] + quicksort(greater)

This code is actually fairly slow since creating new lists in Python is a slow process. However, the code does
have the benefit of being short and not too hard to understand. If we want a quick version of quicksort, we need
to put more work into how to divide up the list. Instead of creating new lists, it’s faster if we can do the work of
dividing up the elements within L itself.

We use two indices, i and j, with i starting at the left end of the list and j starting at the right. Both indices
move towards the middle of the list. We first advance i until we meet an element that is greater than or equal to
the pivot. We then advance j until we meet an element that is less than or equal to the pivot. When this
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happens, we swap the elements at each index. We then continue advancing the indices and swapping in the
same way, stopping the process once the once the i and j indices meet each other. See the figure below:

M D W R H F Y G Z C S D X B Start

M D W R H F Y G Z C S D X B Seek

M D B R H F Y G Z C S D X W Swap

M D B R H F Y G Z C S D X W Seek

M D B D H F Y G Z C S R X W Swap

M D B D H F Y G Z C S R X W Seek

M D B D H F C G Z Y S R X W Swap

In the figure above, the pivot is M, the first letter in the list. The figure is broken down into “seek” phases, where
we advance i and j, and “swap” phases, where we exchange the values at those indices. The blue highlighted
letter on the left corresponds to the position of i and the green highlighted letter on the right corresponds to the
position of j. Notice at the last step how they cross paths.

This process partitions the list. We then make recursive calls to quicksort, using the positions of the indices i
and j to indicate where the two subarrays are located in the main array. In particular, we make a recursive call
on the subarray starting at the left end and ending at the position of i, and we make a recursive call on the
sublist starting at the position of j and ending at the right end. So in the example above, we would call
quicksort on the sublist from 0 to 8 and from 8 to 13. Here is the code for our improved quicksort:

def quicksort(L):
quicksort_helper(L, 0, len(L)-1)

def quicksort_helper(L, left, right):
if left >= right:

return

i, j, pivot = left, right, L[left]
while i <= j:

while L[i] < pivot:
i += 1

while L[j] > pivot:
j -= 1

if i <= j:
L[i], L[j] = L[j], L[i]
i += 1
j -= 1

quicksort_helper(L, i, right)
quicksort_helper(L, left, j)

Quicksort has a O(n log n) running time in the average case. The partition process will typically split the list into
two roughly equal pieces, leading to O(log n) total partitions, and the partitioning process itself takes O(n) time.
However, there are some special cases where it degenerates to O(n2), specifically when the list doesn’t get split
very equally.

One of these cases would be if the list was already sorted. Since the pivot is the first item, which is the smallest
thing in the list, there will be nothing less than the pivot. So one of the recursive cases will be empty and the
other will have n− 1. When we call quicksort recursively on that, we will again have the same problem, with
nothing less than the pivot and n− 2 things greater. Things will continue this way, leading to n recursive calls,
each taking O(n) time, so we end up with an O(n2) running time overall. Since real-life lists are often sorted or
nearly so, this is an important problem.
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One way around this problem is to use a different pivot, such as one in the middle of the list or one that is
chosen randomly. Another approach is to shuffle the list once at the start before beginning the quicksort
algorithm. In theory a O(n2) worst case could happen with the shuffled list, but it would be extremely unlikely.

Counting sort, bucket sorting, and radix sort

Counting sort If we know something about the data in our array, then we can do better than the O(n log n)
algorithms we’ve seen. For instance, if we know that we know the array contains only values in a relatively
small range, then we can use an O(n) sort known as counting sort.

Counting sort works by keeping an array of counts of how many times each element occurs in the array. We scan
through the array and each time we meet an element, we add 1 to its count. Suppose we know that our arrays
will only contain integers between 0 and 9. If we have the array [1,2,5,0,1,5,1,3,5], the array of counts
would be [1,3,1,1,0,3,0,0,0,0] because we have 1 zero, 3 ones, 1 two, 1 three, no fours, 3 fives, and no
sixes, sevens, eights, or nines.

We can then use this array of counts to construct the sorted list [0,1,1,1,2,3,5,5,5] by repeating 0 one time,
repeating 1 three times, repeating 2 one time, etc., starting from 0 and repeating each element according to its
count. Here is code for the counting sort. Instead of modifying the caller’s list, it returns a copy, since it’s easier
to code that way.

def counting_sort(L):
# create list of counts
counts = [0]*(max(L)+1)
for x in L:

counts[x] += 1

# use counts to create sorted list
R = []
for i in range(len(counts)):

R += [i]*counts[i]
return R

The first loop of the code runs in O(n) time, as does the second, so overall, it’s O(n). The only real problem here
is that this sort is limited to integers in a restricted range. If L=[1000000000000, 1] this code would take a
really long time to run. However, many real life lists are more reasonable than this, and counting sort would be
a good approach for them. Counting sort can be made to work for some other types of data in restricted ranges.

Bucket sorting In a bucket sort, we first put all the items into buckets, then sort the buckets, and then put
everything back together. For a physical example, if we have 100 papers with names and need to put them in
alphabetical order, we could first put them in 26 buckets, one for each starting letter. That would give us 26
smaller stacks. We could quickly sort each and then put everything back together. We can stop here or break
things into further buckets if we want. For instance, if we had 1000 papers, chances are the M bucket would be
pretty large. We could break it into smaller buckets, like an MA bucket, and ME bucket, etc., for all the possible
first two letter combinations.

Below is a simple bucket sort for nonnegative integers. It puts the integers into 1000 different buckets based on
how large the largest item in the list is. If the largest item in the list is 4999, then the first bucket is for the range
from 0 to 4, the second is 5 to 9, the third is 10 to 14, etc. This comes from there being 5000 numbers and 1000
buckets. Here is the code.

buckets = [[] for i in range(1000)]
m = max(L) + 1
for x in L:

buckets[1000 * x // m].append(x)
for B in buckets:

insertion_sort(B)
return [b for B in buckets for b in B]
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Notice the overall approach: we create the buckets, put each list item into the appropriate bucket, sort each
bucket, and then combine the buckets back into a single list. This is quite similar to counting sort, which itself is
actually a type of bucket sort. If the hash function splits things up relatively evenly across the buckets, then
bucket sorting has O(n) running time.

Radix sort Radix sort is a type of bucket sort that works on lists of integers. We first sort all the numbers by
their ones digit (rightmost digit). This gives us 10 buckets. Then we sort each of those buckets by looking at the
tens digit (second digit from the right). We repeat this process, continually moving left. Below is the code. It
works for lists of nonnegative integers.

def radix_sort(L):
for d in range(len(str(max(L)))):

buckets = [[] for i in range(10)]
for x in L:

buckets[(x//10**d)%10].append(x)
L = [b for B in buckets for b in B]

return L

In the code above, we use len(str(max(L))) to quickly get the number of digits in the largest number in the
list. This tells us how many total iterations we will have to do. At each iteration, we break the list into 10
buckets based on the current digit we are looking at. We use a little math to get that digit from each number.
Namely, for the dth digit from the right of x we use (x//10**d). The second-to-last line collapses (or flattens)
the list of buckets into a single list. This list is now sorted by the dth digit. When we move on to sort by the
d + 1st digit at the next step, that sorting will not change the order of things in the list that have the same dth
digit. That’s what makes this work. Radix sort runs in O(n) time, specifically O(n log m) time, where m is the
maximum element of the list. Radix sort can be modified to work with strings and other data types.

A few other sorts

Heapsort Heapsort is a nice O(n log n) algorithm. It uses a heap, which is a data structure that stores data so
that the minimum element can always be accessed in O(1) time. Specifically, it uses a binary tree which is
guaranteed to be evenly balanced, so that no branch is more than one level deeper than any other. The
minimum element is always at the top (root) of the tree, so it can be accessed easily. Adding an element to a
heap is done by adding it to the bottom of the tree and then moving it up a level at a time until it reaches the
level it needs to be at according to some rules we won’t get into here. Since a balanced binary tree with n items
has log n levels, adding is a O(log n) operation. Popping from a heap (removing the minimum element) also
involves moving elements through the levels of the tree, which runs in O(log n) time.

Below is some Python code implementing heapsort. It uses heap operations in Python’s heapq library. The
heapify function turns a list into a heap. The heappop operation pops the top thing off the heap, which is
always the minimum. So popping things off a heap one-by-one and adding them to a list results in a sorted list.

def heapsort(L):
H = L[:]
heapify(H)
for i in range(len(L)):

L[i] = heappop(H)

Internally, the heapify function loops over all the elements of the list and adds them one-by-one to a heap. The
loop takes n steps and adding each item to the heap takes on average log n steps, so this is O(n log n) overall.
The loop where we pop the items and add them to the list is O(n log n) for similar reasons.

Bogosort This is not a practical sorting algorithm by any means. It’s included here mostly for fun and partly
and to demonstrate that some algorithms can have very large running times. Bogosort is really simple: shuffle
the array and then check to see if it’s in order. Keep doing this until it comes out in order. Here is the code:
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def bogosort(L):
while True:

shuffle(L)
for i in range(len(L)-1):

if L[i+1] < L[i]:
break

else:
return

The running time of this algorithm is O(n!). The notation n! is for the factorial of n, which is where we multiply
all the values from n down to 1. For instance, 5! is 5 · 4 · 3 · 2 · 1= 120. Factorials grow really fast. For instance,
10! is 3,628,800, 20! is 2,432,902,008,176,640,000, and 100! is a number that is 158 digits long. If there are n
items in the list, a basic result from combinatorics or discrete math is that there are n! ways to rearrange the
items (these are called permutations), and on average it will take n!/2 shuffles before we get one that works.
It’s worth trying bogosort out yourself with a few different lists to see how slow it really is.

Selection sort variant This is a variation on a sort called selection sort. It’s a O(n2) algorithm and it has no
special cases it’s good for. However, it’s the simplest sorting algorithm I know of. We loop over the list and
compare each element to all the ones that come after it, swapping whenever we find something out of order.

def slow_sort(L):
for i in range(len(L)):

for j in range(i+1, len(L)):
if L[i] > L[j]:

L[i], L[j] = L[j], L[i]

Bubble sort We’ll just mention this last sort because it’s so well known, even outside of computer science. It’s
an O(n2) algorithm that really isn’t very good. The basic idea is we work our way from the end of the list to the
front of the list, with items “bubbling up” to where they need to be.

def bubble_sort(L):
for i in range(len(L)-1):

for j in range(len(L)-1,i,-1):
if L[j-1] > L[j]:

L[j-1], L[j] = L[j], L[j-1]

Summary and running times

Overall, a sorting algorithm has to at least look at every element once, so the minimum running time for a
sorting algorithm is O(n). As we’ve seen, counting sort and radix sort can achieve this for certain types of data.
A general sorting algorithm that works for any type of data will need to do comparisons, checking to see if
certain elements are greater or less than others. Any sorting algorithm that does comparisons is Ω(n log n). That
is, we can’t do any better than n log n. To see why, think about it this way: there are n! ways to reorder the list,
and only one of those is in sorted order. If we were to do a binary search through these n! reorderings, it would
take O(log(n!)) steps. If we approximate n! by nn, this becomes O(log(nn)), which simplifies to O(n log n), using
properties of logarithms.

Which search to use will depend on a few factors. If the list is small, most of the sorts we covered would be fine
unless speed is really important. If speed really matters, then insertion sort is good for lists of up to maybe a few
dozen elements, and for anything larger, quicksort and mergesort (especially its Timsort variation) are good.
Those sorts are good general purpose sorts that work with any sortable data type. But if you have very specific
data in mind, like if you have a list of English words or a list of integers in the range from 1 to 10000, then
counting sort, radix sort, or some type of bucket sort will likely be a better approach.

Another consideration is if the sort is stable. If you are sorting a list of objects based on a certain field, and the
are multiple objects with equal values in that field, a stable sort will keep those objects in the same order as in
the original list. In some situations, this is important. For instance, if we are sorting a list of person objects by
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age, and the objects are initially in alphabetical order by name, a stable sort will preserve that alphabetical order
in that people with the same age will still be in alphabetical order. A sort that is not stable could jumble things.
The standard implementations of mergesort and insertion sort are stable, while quicksort and heapsort are not.
However, each of these can be modified to make them stable if needed.

A really nice audio/video demonstrating most of the sorts in this set of notes, as well as a few others, is “15
Sorting Algorithms in 6 Minutes” at https://www.youtube.com/watch?v=kPRA0W1kECg.

https://www.youtube.com/watch?v=kPRA0W1kECg

