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Graphs

Graphs are networks of points (called vertices) and lines (called edges), like the ones shown below:

Graphs are generalizations of trees. They are useful for modeling many real-life things. Here are a few examples:

• A network of cities and roads is naturally modeled by a graph with the vertices being cities and the edges
being roads. We will learn graph algorithms that allow us to find the shortest path from one destination to
another. These are the foundation of GPS navigation.

• Another real-life example is a computer network, where the vertices represent computers or routers and
edges indicate which computers/routers have direct lines to which others. Algorithms based in graph
theory are used to route packets around the network and to avoid packets getting caught in infinite loops.

• More abstractly, graphs can represent a social network with the vertices representing people and the edges
representing that the corresponding people know each other. Graph algorithms can be used to discover
relationships between people in the network.

• Even more abstractly, graphs can be used to solve scheduling problems. For instance, if a school wants to
schedule classrooms for classes, it could represent things with a graph, using vertices to represent classes
and edges between vertices to indicate that their corresponding classes overlap in time. Something called
graph coloring could then be used to find a good or optimal assignment of classrooms to classes.

Vocabulary Here is a list of some useful vocabulary:

• If there is an edge between two vertices, we say the vertices are adjacent.

• The neighbors of a vertex are the vertices it is adjacent to.

• The degree of a vertex is the number of neighbors it has.

• A path in a graph between vertices u and v is where you start at a u and trace through the graph following
edges from vertex to vertex until you reach v, making sure not to visit a vertex more than once.

• A cycle in a graph is a path that starts and ends at the same vertex.

• A graph is connected if there is a path from every vertex in the graph to every other vertex.

• A connected graph with no cycles is called a tree.

To illustrate these definitions, consider the graph below. There are 5 vertices and 7 edges. The edges involving
vertex a are ab, ac, and ad. So we say that a is adjacent to b, c, and d and that those vertices are neighbors of
a. One cycle in the graph is abed, since we can trace from a to b to e to d and back to a. Some other example
cycles are acd and adcb. The graph is connected since it’s possible to find a path between any two vertices in
the graph. The graph is not a tree since it contains cycles.
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Digraphs For some problems, it is useful to have edges that go in only one direction instead of both ways. This
is sort of like having one-way streets instead of two-way streets. A graph where the edges are directional is
called a directed graph or digraph. An example is shown below:

Representing graphs in code

We will look at the two main approaches below.

Adjacency matrices The idea is that we use a matrix to keep track of which vertices are adjacent to which
other vertices. An entry of 1 in the matrix indicates two vertices are adjacent and a 0 indicates they aren’t
adjacent. For instance, here is a graph and its adjacency matrix:

a c e

d

b a b c d e
a 0 1 1 1 0
b 1 0 1 0 1
c 1 1 0 1 0
d 1 0 1 0 1
e 0 1 0 1 0

Adjacency lists The second approach to implementing a graph is to use adjacency lists. For each vertex of the
graph we keep a list of the vertices it is adjacent to. Here is a graph and its adjacency lists:

a c e

d

b
a : [ b, c, d ]
b : [ a, c, e ]
c : [ a, b, d ]
d : [ a, c, e ]
e : [ b, d ]

Adjacency matrices vs. adjacency lists Adjacency matrices make it very quick to check if two vertices are
adjacent. However, if the graph is very large, adjacency matrices can use a lot of space. For instance, a
1,000,000 vertex graph would require 1,000,000 × 1,000,000 entries, having a trillion total entries. This would
require an unacceptably large amount of space.

Adjacency lists use a lot less space than adjacency matrices if vertex degrees are relatively small, which is the
case for many graphs that arise in practice. For this reason (and others) adjacency lists are used more often than
adjacency matrices when representing a graph on a computer.

Adjacency lists in Python It’s very quick to implement a graph class in Python. We can use a dictionary where
the keys are the vertices and the values are the adjacency lists. To fancy it up a little bit, we will make the class
inherit from Python’s dictionary class and create a new method that adds edges to the graph. To an edge
between vertices u and v, we add v to the adjacency list for u and we add u to the adjacency list for v. See below.
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class Graph(dict):
def add(self, v):

self[v] = set()

def add_edge(self, u, v):
self[u].add(v)
self[v].add(u)

One thing worth noting is that we are actually using adjacency sets instead of lists. It’s not strictly necessary, but
it does make a few things easier later on. A digraph class is almost the same except that to make the edge from
u to v be a one-way edge, we add v to the list (set) for u, but we don’t add u to the list for v. Here is the class:

class Digraph(dict):
def add(self, v):

self[v] = set()

def add_edge(self, u, v):
self[u].add(v)

Below is an example showing how to create a graph and add some vertices and edges:

G = Graph()
G.add('a')
G.add('b')
G.add_edge('a', 'b')

Here is a quicker way to add a bunch of vertices and edges:

V = 'abcde'
E = 'ab ac bc ad de'
G = Graph()
for v in V:

G.add(v)
for e in E.split(' '):

G.add_edge(e[0], e[1])

Below we show how to print a few facts about the graph:

print(G)
print('Neighbors of a: ', G['a'])
print('Is there a vertex z?', 'z' in G)
print('Is there an edge from a to b?', 'b' in G['a'])
print('Number of vertices:', len(G))

Here is a slightly beefed-up version of the class with a constructor that allows us to pass the vertices and edges
directly to it.

class Graph(dict):
def __init__(self, V, E):

for v in V:
self.add(v)

for u,v in E:
self.add_edge(u, v)

def add(self, v):
self[v] = set()

def add_edge(self, u, v):
self[u].add(v)
self[v].add(u)

Searching

One of the most fundamental tasks on a graph is to visit the vertices in a systematic way. We will look at two
related algorithms for this: breadth-first search (BFS) and depth-first search (DFS). The basic idea of each of
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these is we start somewhere in the graph, then visit that vertex’s neighbors, then their neighbors, etc., all the
while keeping track of vertices we’ve already visited to avoid getting stuck in an infinite loop. The figure below
shows the order in which BFS and DFS visit the vertices of a graph, starting at vertex a. Assume that when
choosing between neighbors, it goes with the one that is alphabetically first.

a
1

b
2

c
3

d
4

e
5

f

6

g

7
h
8

i
9

j
10

k
11

l
12

m13 n14

a
1

b
2

c
5

d
9

e
10

f
3

g

4
h
6

i
8

j
11

k
12

l
14

m7 n13

Notice how BFS works gradually outward from vertex a. Every vertex at distance 1 from a is visited before any
vertex at distance 2, every vertex at distance 2 is visited before any vertex at distance 3, etc. DFS, on the other
hand, follows a path down into the graph as far as it can go until it gets stuck. Then it backtracks to its previous
location and tries searching from there some more. It continues this strategy of following paths and
backtracking.

These are the two key ideas: BFS fans out from the starting vertex, doing a systematic sweep to deeper and
deeper levels. DFS just goes as far down as it can go. When it can’t go any further, it backs up a level and tries to
explore other directions from that lavel. If we are just trying to find all the vertices in a graph, then both BFS
and DFS will work equally well. However, if we are searching for vertices with a particular property, then
depending on where those vertices are located in relation to the start vertex, BFS and DFS will behave
differently. BFS, with its systematic search, will always find the closest vertex to the starting vertex. However,
because of its systematic sweep, it might take BFS a while before it gets to vertices far from the starting vertex.
DFS, on the other hand, can very quickly get far from the start, but will often not find the closest vertex first.

Code for BFS

In both BFS and DFS, we start at a given vertex and see what we can find from there. The searching process
consists of visiting a vertex, looking at its neighbors, and adding any new neighbors to two separate lists. One
list (actually a set) is for keeping track of what vertices we have already found. The other list keeps track of the
order we will visit vertices to see what their neighbors are. Here is some code implementing BFS:

def bfs(G, start):
found = {start}
waiting = [start]

while waiting:
w = waiting.pop(0)
for n in G[w]:

if n not in found:
found.add(n)
waiting.append(n)

return found

The function takes two parameters: a graph G and a vertex start, which is the vertex we start the search at. We
maintain a set called found that remembers all the vertices we have found, and we maintain a list called
waiting that keeps of the vertices we will be visiting. It acts like a queue. Initially, both start out with only
start in them. We then continually do the following: pop off a vertex from the waiting list and loop through its
neighbors, adding any neighbor we haven’t already found into both the found set and waiting list. The while
loop keeps running as long as the waiting list is not empty, i.e. as long as there are still vertices we haven’t
explored. At the end, we return all the vertices that were discovered by the search.
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Let’s run BFS on the graph below, starting at vertex a. The first thing the algorithm does is add each of the
neighbors of a to the waiting list and found set. So at this point, the waiting list is [b, c, d, e]. BFS always visits
the first vertex in the waiting list, so it visits b next and adds its neighbors to the list and set. So now the
waiting list is [c, d, e, f , g]. For the next step, we take the first thing off the waiting list, which is c and visit it.
We add its neighbors h and i to the list and set. This gives us a waiting list of [d, e, f , g, h, i]. As the process
continues, the waiting list will start shrinking and the found set will eventually include all the vertices.

a

b c d e

f g h i j k l

m n

Here are several important notes about this code:

• The code has been deliberately kept small. It has the effect of finding all the vertices that can be reached
from the starting vertex. We will soon see how to modify this code to do more interesting things.

• The method requires us to pass it a starting vertex. We could also use v = next(iter(G)) as the first line,
which will pick a vertex from the graph for us.

• We could use a list for found instead of a set, but the result would be substantially slower for large graphs.
The part where we check to see if a vertex is already in the found set is the key. Python uses a O(1)
hash-based approach to check if something is in a set, which is faster than the O(n) approach for checking
a list.

Running time and memory usage The running time is O(v + e), where v and e are the number of vertices
and edges, respectively, in the graph. The most edges we could have in a graph is v(v − 1)/2, if every vertex is
adjacent to every other vertex, so O(v + e) becomes O(v2) in that case. If we’re searching a tree with depth d
with each vertex having an average of b children, then the running time is O(bd). This is important as one way
to program artificial intelligence for games is to create a tree where the vertices are states of the game and edges
go from the current state to all possible states you can get to by doing a legitimate move in the game. Often
these trees will end up pretty deep, meaning BFS won’t be able to search the whole tree in a reasonable amount
of time. For instance, if there are 10 possible decisions at each point in a game that can take up to 50 turns, then
BFS will need to investigate an unreasonable 1050 possible vertices to determine an optimal move.

The memory usage of BFS is O(v), which becomes O(bd) in the tree case mentioned above. This can also
become unreasonable when searching a deep tree.

Code for DFS

One way to implement DFS, it to use the exact same code as BFS except for one extremely small change: Use
waiting.pop() instead of waiting.pop(0). Everything else stays the same. Using waiting.pop() changes the
order in how we choose which vertex to visit next. DFS visits the most recently added vertex, while BFS visits
the earliest added vertex. BFS treats the list of vertices to visit as a queue, while DFS treats the list as a stack.

Though it works, it’s probably not the best way to implement DFS. Recall that DFS works by going as down in
the tree until it gets stuck, then backs up one step, tries going further along a different path until it gets stuck,
backs up again, etc. One benefit of this approach is that it doesn’t require too much memory. The search just
needs to remember info about the path it is currently on. The approach described above, on the other hand,
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adds all the neighbors of a vertex into the waiting list as soon as it finds them. This means the waiting list can
grow fairly large, like in BFS. Below is a different approach that avoids this problem.

def dfs(G, start):
waiting = [start]
found = {start}
while waiting:

w = waiting[-1]
N = [n for n in G[w] if n not in found]
if len(N) == 0:

waiting.pop()
else:

n = N[0]
found.add(n)
waiting.append(n)

return found

This code has running time O(v + e), just like BFS, but it’s memory usage is better. In the case of a tree with
depth d and branching factor b, BFS has space usage O(bd), while this version of DFS has space usage O(bd),
since it only has to remember info about the current path. This is a huge difference. The code above is also
useful for certain algorithms that rely on the backtracking nature of DFS.

You’ll often see DFS implemented recursively. It’s probably more natural to implement it that way. Here is a
short function to do just that:

def dfs(G, w, found):
found.add(w)
for x in G[w]:

if x not in found:
dfs(G, x, found)

We have to pass it a set to hold all the vertices it finds. For instance, if we’re starting a search at a vertex labeled
'a', we could create the set as S = {'a'} and then call dfs(G, 'a', S).

Variations on the BFS and DFS algorithm

Returning a path Here is a variation of BFS that finds the shortest path, in terms of least number of
intermediate vertices, between a start and a goal vertex. The big change here is to turn the found set into a
dictionary. When we find a new vertex, we use this dictionary to record what vertex’s neighbors we were
exploring when we found it. This allows us to remember each vertex’s “parent” or immediate predecessor on the
search. We can use this to create a path through the graph between the start and goal vertices. The code in the
if x == goal block uses this dictionary to trace back and return the path. Since we are using BFS, the path is
guaranteed to be as short as possible.

def bfs_path(G, start, goal):
found = {start:None}
waiting = [start]

while waiting:
w = waiting.pop(0)
for x in G[w]:

if x == goal:
path = [x]
x = w
while found[x] != None:

path.append(x)
x = found[x]

path.append(x)
path.reverse()
return path
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if x not in found:
found[x] = w
waiting.append(x)

return []

If we replace waiting.pop(0) with waiting.pop(), we would have a variation of DFS that returns a path.
Unlike with BFS, there is no guarantee that the path returned by DFS will be the shortest one possible.
Sometimes it is optimal, but quite often it is long and meandering.

Iterative deepening DFS BFS is nice in that it will find the shortest path between the start and goal vertices.
Its major flaw is that it can be a memory hog. It needs to hold a lot more things in its queue than DFS needs to
hold in its stack. In particular, for a tree with d levels and branching factor b, BFS needs O(bd) memory, while
DFS only needs O(bd) memory. The downside of DFS is that it won’t return optimal paths usually. But we can
modify it in a way so that it will return an optimal path. The first step to doing this is to create a depth-limited
version of DFS. For this, we simply put a limit to the search that doesn’t let DFS get any more than a certain
distance away from the start vertex. Here is the code:

def depth_limited_dfs(G, start, limit):
waiting = [(start, 0)]
found = {start}
while waiting:

w, current_depth = waiting[-1]
if current_depth == limit:

waiting.pop()
continue

N = [n for n in G[w] if n not in found]
if len(N) == 0:

waiting.pop()
else:

n = N[0]
found.add(n)
waiting.append((n, current_depth+1))

return found

The main change to this over the earlier DFS code is to add a depth variable that gets put with each vertex on
the waiting list. Each time we add a new thing to that list, we increase the depth level by 1, and if we hit the
depth limit, then we don’t add anything new from the vertices at that limit.

We can modify this into a search called iterative deepening. The idea is to run the depth-limited DFS with
ever-increasing values of the depth. We start with depth 1, then depth 2, 3, 4, . . . . This guarantees we will find a
shortest path. One obvious problem is we are repeating ourselves over and over again. For instance, all the
work of the depth=3 search will be repeated when we do the depth=4 search. In many cases, the bulk of the
work turns out to be at the deepest levels, so this repetition doesn’t turn out to be such a bad thing. And
remember that the benefit of doing this that we use much less memory than BFS. Below is the iterative
deepening code, formulated to return the shortest path between the start and goal vertices.

def depth_limited_path(G, start, goal, limit):
waiting = [(start, 0)]
found = {start:None}
while waiting:

w, current_depth = waiting[-1]
if current_depth == limit:

waiting.pop()
continue

N = [n for n in G[w] if n not in found]
if len(N) == 0:

waiting.pop()
else:

n = N[0]
found[n] = w
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if n == goal:
path = []
while found[n] != None:

path.append(n)
n = found[n]

path.append(n)
path.reverse()
return path

waiting.append((n, current_depth+1))
return []

def iterative_deepening_path(G, start, goal, max_depth):
for i in range(1, max_depth):

result = depth_limited_path(G, start, goal, i)
if result != []:

return result

Applications of BFS and DFS

Word ladders A word ladder is a type of puzzle where you are given two words and you have to get from one
to another by changing a single letter at a time, with each intermediate word being a real word. For example, to
get from time to rise, we could do time→ tide→ ride→ rise.

We can model this as a graph whose vertices are words, with edges whenever two words differ by a single letter.
Solving a word ladder amounts to finding a path in the graph between two vertices. Here is code that will create
the graph using four-letter words. It relies on a wordlist file. Such files are freely available on the internet.

words = [line.strip() for line in open('wordlist.txt')]
words = set(w for w in words if len(w)==4)
alpha = 'abcdefghijklmnopqrstuvwxyz'

G = Graph()
for w in words:

G.add(w)

for w in words:
for i in range(len(w)):

for a in alpha:
n = w[:i] + a + w[i+1:]
if n in words and n != w:

G.add_edge(w, n)

The trickiest part of the code is the part that adds the edges. To do that, for each word in the list, we try
changing each letter of the word to all possible other letters, and add an edge whenever the result is a real
word. Once the graph is built, we can call one of the searches to find word ladders, like below:

print(bfs_path(G, 'wait', 'lift'))
print(iterative_deepening_path(G, 'wait', 'lift', 1000))

It’s fun to try changing the BFS path approach to a DFS path approach (just modify the pop call in BFS). It finds
word ladders, but they can come out dozens or even hundreds of words long. Many other puzzles and games
can be solved by using a BFS or DFS approach like this.

Components

The basic versions of BFS and DFS that we presented return all the vertices in the same component as the
starting vertex. With a little work, we can modify this to return a list of all the components in the graph. A
graph’s components are its “pieces.” Specifically, two vertices are in the same component if there is a path from
one to the other. They are in different components if there is no such path.



9

We can find components by looping over all the vertices in the graph and running a BFS or DFS using each
vertex as a starting vertex. Of course, once we know what component a vertex belongs to, there is no sense in
running a search from it, so in our code we’ll skip vertices that we have already found. Here is the code:

def components(G):
component_list = []
found = set()
for w in G:

if w in found: # skip vertices whose components we already know
continue

# now run a BFS starting from vertex w
found.add(w)
component = [w]
waiting = [w]

while waiting:
v = waiting.pop(0)
for u in G[v]:

if u not in found:
waiting.append(u)
component.append(u)
found.add(u)

component_list.append(component)
return component_list

Here is code to call this on the word-ladder graph of 4-letter words:

L = sorted(components(G), key=len, reverse=True)
print([len(x) for x in L])

Here is the result:

[2485, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

We see that there is one component that consists of most 4-letter words, a couple of smallish components, and
many singletons. The 6-vertex component is ['acne', 'acre', 'acme', 'ache', 'achy', 'ashy']. Some of
the singletons are rely, hymn, and liar. These are vertices of the graph that have no neighbors.

Floodfill

Floodfilling is a technique used in graphics and other settings where you want to fill a region with something. If
you’ve ever played Minesweeper and clicked on the right spot, you can clear a wide area. Floodfill is used there.
Floodfill is also used by the paint bucket icon in Microsoft Paint. We can use DFS or BFS to implement a floodfill.
In the example below, we will assume that we have a rectangular grid of cells with some of them set to the -
character and the rest to the * character. The cells are on a grid with coordinates of the form (r, c) with (0, 0)
being the upper left. The search starts at a user-specified coordinate where there is a - character, and it looks for
all the other - characters it can reach from there. It replaces all of them with a special character. The * characters
act sort of like walls. We can go around them, but not through them while we’re filling. Here is the code:

def floodfill(board, start):
waiting = [start]
found = {start}

while len(waiting) > 0:
w = waiting.pop()
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for n in get_neighbors(w, board):
if n not in found:

r, c = n
if board[r][c] == '-':

found.add(n)
waiting.append(n)

return found

def get_neighbors(v, board):
r, c = v
N = [(r+1,c), (r-1,c), (r,c+1), (r,c-1)]
return [(a,b) for a,b in N if 0<=a<len(board) and 0<=b<len(board[0])]

board = """
------****--**
---***-------*
---******--***
*********-****
*********-****
*********-----
--------------
-------*******"""
board = [list(b) for b in board[1:].split('\n')]

for r, c in floodfill(board, (1, 10)):
board[r][c] = chr(9608)

for r in range(len(board)):
for c in range(len(board[r])):

print(board[r][c], end='')
print()

Note the code doesn’t actually create a graph object. The graph here is more implicit than explicit. The cells of
the board act as the vertices. Instead of creating edges, we use the get_neighbors function, which returns the
neighbors of a given cell. This technique of not explicitly creating a graph can be useful, especially when the
graph itself would be very large or when we likely won’t need more than a small portion of the graph.

Mazes

DFS is particularly known as an algorithm to solve mazes. It can also be used to generate them. Below is a
program that uses DFS to traverse a maze. You really should copy-paste it and run it. It graphically shows the
path DFS takes, making it really clear how DFS tries paths and backtracks when it reaches dead ends.

from tkinter import *
from time import sleep

def maze(B, w, last, found):
draw_to_screen(w, 'yellow')
for x in get_neighbors(B, w):

if is_goal(B, x) and x != w:
draw_to_screen(x, 'yellow')
return True

if x not in found:
found.add(x)
draw_to_screen(w, 'red')
is_done = maze(B, x, last, found)
draw_to_screen(w, 'yellow')
if is_done:

return True
draw_to_screen(w, 'red')
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def draw_to_screen(coord, color):
r,c = coord
canvas.create_rectangle(30*c+2, 30*r+2, 30*c+30, 30*r+30, fill=color)
canvas.update()
sleep(.3)

def is_goal(board, v):
r,c = v
N = [(r+1,c),(r-1,c),(r,c+1),(r,c-1)]
for r,c in N:

if r==-1 or c==-1 or r==len(board) or c==len(board[r]):
return True

return False

def get_neighbors(board, v):
r,c = v
N = [(r+1,c),(r-1,c),(r,c+1),(r,c-1)]
return [(r,c) for (r,c) in N if 0<=r<len(board) and 0<=c<len(board[0]) and board[r][c]=='-']

def draw():
for r in range(len(board)):

for c in range(len(board[r])):
canvas.create_rectangle(30*c+2, 30*r+2, 30*c+30, 30*r+30,

fill='gray' if board[r][c]=='*' else 'white')

board ="""

***************
*----****-*--**
--**--***-**--*
*-*-*-****---**
***-----**-*-**
*****-**---*---

*-------**-*-**
****--*--*-*-**
**----**---****
***************"""
board = [list(b) for b in board[1:].split('\n')]
root = Tk()
canvas = Canvas(width=600, height=600, bg='white')
canvas.grid()
draw()
found = {(2,0)}
maze(board, (2,0), None, found)


