Steganography

Steganography is the idea of hiding a message inside another message. Steganography differs from cryptography
in that there is no key required. To find the message, you simply need to know where to look. Here is an
example. A message is hiding in this text.

Steganography is frequently
examined in popular

culture as a way to

reflect upon how

easily one can

trick others.

In hidden message is the word “secret,” which can be found by looking at the first letter of each line. There are
thousands of ways to hide messages. We will look at a few common ones. One simple trick to hide a message in
a document is to change the font color to match the background color. This is the digital analog of invisible ink.

Hiding data in images

A very common technique is hiding data in an image. To understand how it works, we first need to know how
colors work in computer images. Every color is broken into three components: red, green, and blue. Each of
those components is commonly 8 bits, ranging from 0 to 255. In total, there are 256° ~ 16.8 million colors. The
key to hiding things in images is that it is very difficult for the human eye to distinguish between all of the 16.8
million colors, especially if there is only a change in the least significant bits of a pixel’s components, like if we
go from RGB components of (160,200, 80) to (160,200, 79).

It will help to think of the 8-bit components in binary form, like 10001010 or 00101110. The leftmost bits are
the most significant ones, and a change in those will have a dramatic difference on the color. For instance, the
difference between 00000000 and 10000000 is the difference between 0 and 128. The rightmost bits are the
least significant, and a change in those will be likely be imperceptible to the human eye. Changing 00000000 to
00000001 changes 0 to 1.

We can actually hide an entire image inside another. In order to do that, we will do some bitwise operations.
There are four operations that we will need:

e & — This is the bitwise AND operation. The rule is that 1 & 1 = 0 and all three other possibilities come
out to 0. The most common use for & is as a mask. It allows us to pick out certain bits from a number and
zero out everything else. Here is an example:

11010101
& 11100000

11000000

To pick out the top three bits, we AND with 11100000. This acts as a window that lets the first three bits
pass through unchanged and zeroes out the rest. If we want to pick out the bottom 5 bits, we would AND
with 00011111.

* A — This is the bitwise XOR operation. The rules are that0 A 1 = 1,1 A 0 =1,0 A 0 = 0, and
1 ~ 1 = 0. The XOR operation acts a little like addition, and is used to combine things.

* >> — This is a right shift. It moves all the bits over a specified amount to the right, adding in Os on the left
as needed. For instance, 10110011 >> 3 becomes 00010110. The bits that get shifted off the end
disappear.

* << — This is a left shift. It works similarly to the right shift, but in the opposite direction. In Python, one
thing to be careful of is if we start with an 8 bit number and shift left, Python will create a larger value.
For instance, 10110011 << 3 will become 1011011000.



To hide an image, we will need an image to hide it in. We’'ll call that the carrier image. Let’s assume that r1l is
the red component of a pixel of the carrier image, and r2 is the red component in the message we want to hide.
The following operation is part of hiding the image in the carrier:

rl = (rl & 0b11111000) A (r2 >> 5)

This operation first zeros out the bottom 3 bits from the carrier, leaving the top 5 bits alone. Then it shifts the
most significant bits from the image we’re hiding so that they are in the 3 least significant positions. Finally, we
add the two together. In the result, the top 5 bits will be from the carrier and the bottom 3 will be from the
hidden image. We do a similar thing for the green and blue components, and we do that for all the pixels in the
image. Here is some Python code that will do the whole process.

tkinter *
PIL Image, ImageTk
change():

imagel, photol, image2, photo2
pix1l = imagel.load()
i range(photol.width()):
h] range(photol.height()):

rl,gl,bl = pix1[i,]]
r2,g2,b2 = pix2[i,]j]
rl = (rl & 0b11111000) A (r2 >> 5)

&
gl = (gl & 0b11111000) ~ (g2 >> 5)
bl = (bl & 0b11111000) A (b2 >> 5)
pix1[i,j] = rl,gl,bl
photol=ImageTk.PhotoImage(imagel)
canvas.create_image(0,0,image=photol, anchor=NW)

load_files():

imagel, photol, image2, photo2
imagel=Image.open('imgl.jpg').convert('RGB")
photol=ImageTk.PhotoImage(imagel)
image2=Image.open('img2.jpg').convert('RGB")
photo2=ImageTk.PhotoImage(image2)
canvas.configure(width=photol.width(), height=photol.height())
canvas.create_image(0,0,image=photol, anchor=NW)

root = Tk()

button = Button(text='Change', font=('Verdana', 18), command=change)
canvas = Canvas()

canvas.grid(row=0)

button.grid(row=1)

load_files()

mainloop()

To run the program, you will first need to install the Python Imaging Library. Use pip install pillow at the
command prompt to do that. Next, you will need two image files, preferably both the same size. They are called
imgl. jpg and img2. jpg in the code above. When you run the program and click the “Change” button, the
second image will be hidden in the first. I haven’t provided the code to extract that image, but you should be
able to work out what it is based on the discussion above about how to hide the image.

You might try experimenting with the number of bits to use for the carrier and the number for the hidden image.
The more bits for the carrier, the better the hidden image will be concealed, but the worse its quality will be
when revealed. It also helps to make sure the carrier image is busy. A plain image, especially one with a sky or a
lot of solid colors, will make it easier for human eyes to spot the hidden image.



One way to hide text in other text

To hide data, it often helps to convert it to a binary format. Here is a helper function that will convert a string of
text into a binary string of Os and 1s:

to_binary(message):
m = message.encode()
h = bytes.hex(m)
'".join('{:04b}"'.format(int(x,16)) X h)

It starts by converting the string into a Python byte string. We then use bytes.hex to turn the byte string into a
hex string. The last line converts the hex to binary. The purpose of using the call to the format method is to
make sure leading Os are preserved. For instance, we want hex number 6 (0110) to stay as 0110, and not
become 110, which is what Python’s bin function would do. Here is a helper function that takes a binary string
and turns it back into text.

from_binary(message):

s = int(message, 2)

h = hex(s)[2:]
bytes.fromhex(h)

Now we can look at a neat trick for hiding a message. The letter a has ASCII/Unicode value 97. Farther up in the
Unicode table, at character 1072, there is another character that is pixel-for-pixel identical to the a at character
97. It’s the letter a in the Cyrillic alphabet. We can use this fact to hide a message inside some carrier text.

Let’s use “aardvarks are animals any day” as our carrier text. Let’s try to hide the letter Z (ASCII/Unicode value
90). The value 90 translates to 01011010 in binary (and we can use the code above to do that). Let’s overlay
this on the carrier message, like below:

0oL o0 1 1 0 1 0
aardvarks are animals any day

Specifically, we’ve lined up the binary with the a’s of the message. Every a that is lined up with a 0 will stay as
an ordinary a. Every a that is lined up with a 1 will get changed to a Cyrillic (character code 1072) a. Here is
code that will hidea message using this technique:

hide_message(carrier, message):

[N}

S =
b = to_binary(message)
i=0
C carrier:
c !="'a'":
S += C
i < len(b):
b[i] == '0"':
s += 'a'

s += chr(1072)
i+=1

(]

S +=
s

a

We have to be a little careful in the likely event that the carrier message has more a’s than we have bits in the
hidden message. That’s what the i < len(b) part is for. To show a hidden message, we do things in reverse, like
below:

find_message(carrier):
S = T
C carrier:

c =="'

a :



s += '0'
¢ == chr(1072):
s += '1'

from_binary(s)

Here is a little code to test this out:

message = 'Zebra'

carrier = 'aardvarks are animals any day '=%20
h = hide_message(carrier, message)

print(h)

print(find_message(h))

Note that there will be some extra \x00 characters at the end of the message. If you want to, you can write a
little code to remove them.

More about steganography

We have looked at a few simple ways of hiding data. There are so many more. One nice approach to hiding data
used by the popular software steghide is as follows: Start with a passphrase. This is used to seed a PRNG that
selects random pixels in a carrier image. The message to be hidden is converted to binary and hidden in the
least significant digits of those pixels. The steghide program does more than just this to avoid detection, but
that’s the basic idea. And there’s nothing special about images. Data can be hidden in audio and other types of
files in a similar way.

Steganography can be detected by statistical and machine learning techniques. These techniques look at
ordinary images and text and build up some statistics about what ordinary images and text looks like. If an
image is hiding a significant amount of data, these tools will notice that the patterns of bits in the least significant
bit portions of the pixels don’t look like they would for an ordinary image. If you are only storing a very small
amount of data or if you are clever about how you hide things, then you can get around these detection tools.



