Public Key Cryptography

Diffie-Hellman key exchange

All of the ciphers we’ve covered up to this point need both sides of the communication to have a key. In the old
days, people could meet up and exchange keys in person, but that won’t work for the internet. The solution,
discovered in the 1970s, surprised many people at the time. It’s called Diffie-Hellman key exchange. It involves
two parties communicating in public, yet being able to generate a shared secret number that only they will know.

Before we describe the way it works, here is a simpler, but insecure, idea. We will assume the two people
communicating are Alice and Bob. Alice generates a random number a and sends it to Bob. Bob generates his
own random number b and sends it to Alice. They then both multiply the numbers to get ab. This number
would be the shared secret. The problem, of course, is that it’s not secret since someone watching the
communication could see a and b and thus compute ab themselves. But at least the value of ab is a value that
both Alice and Bob now have, and they could use that as a key if they were sure no one else observed their
communication.

It would be good to find a way to disguise a and b before sending them. The trick that Diffie-Hellman uses is to
disguise a by doing g® mod p, where p is a large prime number and g is some other number. Raising a number
to the a power and then modding by a prime seems to be a hard thing to reverse. As long as the prime is very
large, no one has yet found a good way to do that.

Here is an example of the key exchange using g = 3 and p = 7927. First, Alice and Bob pick random numbers.
Suppose Alice picks a = 45 and Bob picks b = 144. Alice disguises her number by computing g mod p, which is
A= 3% mod 7927 = 3147. Bob disguises his number by computing B = g® mod p, which is

3% mod 7927 = 1975.

Alice then computes the shared secret by doing B mod p, which is 1975% mod 7927 = 3641. Bob computes the
shared secret by doing A’ mod p, which is 314714 mod 7927 = 3641. Notice that they both get the same value,
3641. This is the shared secret.

Some notes about the process:

* Notice that A’ = (g?)® = g?® and B* = (g?)? = g, which are the same. It turns out that the mods won’t
affect this. So this is why Alice and Bob both get the same value at the end.

* If you're trying this out yourself, Python’s pow function can be used. pow(x,y,z) does x” mod z.

* An eavesdropper can do a brute-force guess-and-check to try to figure out what a and b are. If they can do
that, then they can figure out the shared secret. To prevent this, p must be chosen to be incredibly large.
People recommend that p be at least 2048 bits, which corresponds to a number over 600 digits long.

* The values of p and g need to be carefully chosen. There are a few good values that people often
repeatedly use.

 Diffie-Hellman is subject to a man-in-the-middle attack. This is where Eve, the eavesdropper, pretends to
be Bob to Alice and pretends to be Alice to Bob. Eve ends up creating shared secrets with Alice and Bob
separately. Each of them thinks they are communicating with the other, but they are really communicating
with Eve. To avoid this, Diffie-Hellman needs to be combined with an authentication scheme so that Alice
and Bob can be sure they are communicating with each other and not an impersonator.

* Once the shared secret is generated, Alice and Bob use it to create keys to use with an ordinary cipher,
such as AES.

* Plain Diffie-Hellman is falling out of use in favor of elliptic curve Diffie-Hellman. The overall idea is the
same, but instead of using modular arithmetic, it uses a different type of arithmetic based on elliptic
curves. The math behind elliptic curves is typically covered in an upper level undergraduate abstract
algebra course.



Public-key cryptography

All of the ciphers we have seen so far are called symmetric. They are called this because both sides of the
communication use the same key. There is another type of cryptography called asymmetric, in which different
keys are used for encryption and decryption. Another name for this is public-key cryptography. One of the keys,
the public key, is available to the public, and the other, the private key, is kept secret.

Here is the basic idea: Suppose Alice wants people to be able to send encrypted messages to her using
public-key cryptography. She creates a public-private key pair. She publishes the public key and keeps the
private key secret. If Bob wants to send an encrypted message to Alice, he encrypts it using the public key. Alice
uses her private key to decrypt it. The public and private keys are tied together so that this works.

A nice analogy for this would be if Alice creates physical padlocks and keys. If someone wants to safely send
something to Alice, they get a padlock from Alice and put their item in a box locked with Alice’s padlock. Alice
can use her key to open the lock. The padlock is like the public key and Alice’s physical key is like the private key.

Trapdoor functions

The security of the Diffie-Hellman key exchange relies on the fact that it is easy to compute g mod p, but it is
hard to reverse the process to figure out a. This mathematical operation is an example of a trapdoor function,
something that is easy to do in one direction and hard to do in the other. Trapdoor functions are very important
in modern cryptography.

A simple, but powerful, trapdoor function is multiplication of prime numbers. It’s easy to multiply to prime
numbers, but it is hard to “unmultiply” them, i.e., to factor them. For instance, it is easy to multiply

999979 x 999983, but it is much harder to factor their product 999962000357. This trapdoor is the basis of one
of the most well-known types of public-key cryptography—RSA.

RSA

RSA is named for the three people who created it: Rivest, Shamir, and Adleman. It’s probably easiest to describe
with an example. We’ll use very small prime numbers in this example to demonstrate the concept, but in the
real world, very large primes need to be used.

Alice starts by generating a public-private key pair. She does this by choosing two prime numbers, p and q. Let’s
use p =101 and q = 137. She then multiplies them together to get n = pq = 13837. She next chooses a value e
that has no factors in common with p —1 or g — 1. In this case, e = 23 works. Finally, she computes a value d
that has the property that de mod (p —1)(¢ — 1) = 1. There is a very fast algorithm, the Extended Euclidean
Algorithm, that can be used to do this. We won’t go into the details here. The value of d turns out to be 7687 in
this example. The public key that Alice publishes is n and e. The private key is d. Alice also shouldn’t let anyone
know what p and q are.

Let’s say Bob wants to encrypt a message with Alice’s private key. RSA only works with numbers, so Bob would
have to convert his message to a sequence of numbers. There are many ways to do this, such as ASCII or
Unicode character codes. Let’s say Bob’s message is the number M = 65. he computes C = M*® mod n, which is
6523 mod 13837 = 12429. To decrypt, Alice does C¢ mod n, which is 124297%87 mod 13837. This comes out to
65, as it should. If you want to try this out, use Python’s pow function (pow(x,y,z) does x¥ mod 2z). Below are a
few notes about RSA.

 Just like with Diffie-Hellman, the primes must be very large, at least 2048-bits (over 600 digits long) to
prevent brute-force and similar attacks.

* RSA is notoriously difficult to implement correctly. Even though the process is pretty simple, there are lots
of subtle details. For instance, the plaintext must be disguised before encrypting for similar reasons to why
ECB mode is bad. Another thing is that the same n must not be reused with multiple values of e. There are



a dozen other such gotchas. Partly because of this, RSA is slowly being phased out in favor of elliptic curve
methods.

RSA is very slow. It’s not typically used to encrypt large amounts of information. Its primary use is for
digital signatures, which we will cover later.

RSA’s security is based on the fact that it seems to be hard to factor large numbers. If someone could
figure a way to decompose n into its component primes p and q, they could figure out the secret key d.
Experts think that factoring is a hard problem, but no one is really sure. One thing that is sure: if people
ever figure out how to build a quantum computer, then RSA is toast, as quantum computers can factor
large numbers quickly.



