
1

Block Ciphers

Introduction

In classical cryptography, the Playfair cipher is an example of a block cipher. Instead of encrypting each letter
individually, the Playfair cipher encrypts them in groups (or blocks) of two letters. In modern cryptography, the
idea of a block cipher is to group the bits of the plaintext into blocks and encrypt entire blocks at once, instead
of one bit at a time like a stream cipher would do.

Let’s look at an example. The cipher in this example is one I’ve made up to help demonstrate block ciphers. This
will be a 4-bit block cipher, which means we will start by grouping the bits of the plaintext into groups of 4 bits.
Then we will use the following rules to encrypt each block.

1. First break it into two mini-blocks of two bits each. Apply the substitution rules 00→ 01, 01→ 11,
10→ 00, and 11→ 10 to each.

2. Then rotate all the bits one step to the right, wrapping the last bit around to the front.

3. Finally XOR the block with the key 1101.

Let’s suppose our plaintext is 1001101011010111, We start by breaking it into 4-bit blocks: 1001 1010 1101
0111. Then we apply the rules on each block. For the first block, we break it into the miniblocks 10 01.
According to the substitution rule, this should become 00 11. Then we rotate all the bits around to get 1001.
Finally, we XOR with 1101 to get 0100. This is our first ciphertext block.

We then do the same process to the other three blocks. Here is a table summarizing the results. The final line
gives us the ciphertext 0100110100001010.

operation Block 1 Block 2 Block 3 Block 4
plaintext 1001 1010 1101 0111
after substitution 0011 0000 1011 1110
after rotation 1001 0000 1101 0111
after XOR 0100 1101 0000 1010

Decryption is the reverse of encryption. We would first XOR with the key, then rotate left, and finally apply the
reverse substitution. Many real block ciphers operate on a similar principle of combining substitutions and
permutations, along with something to mix in the key. Those ciphers use several rounds of these operations as
well as much larger block sizes.

How big should the blocks be?

First, block sizes are usually taken to be powers of 2 because sizes that are powers of 2 are more efficient to
implement at the CPU level than other sizes.

Next, block ciphers that use small block sizes can be subject to something called a codebook attack, where
attackers build up a table of which plaintext blocks correspond to which ciphertext blocks. The block size needs
to be large enough to make it so that the table is unmanageably large.

The birthday problem also comes into play. For similar reasons as to why you don’t want to reuse the keystream
in a stream cipher, it’s important that ciphertext blocks don’t repeat. A block cipher that uses 32-bit blocks
would have repeating blocks becoming likely after

p
232 = 216 =65,536 blocks. This is unacceptably low. If we

go with 64-bit blocks, then repeats are likely after
p

264 = 232 ≈ 4 billion blocks. This is better, but it is still only
a few gigs of data, which can be reached quickly on a fast internet connection. So we would need to use at least
128-bit blocks.

We could go higher, but 256-bit blocks would be too big to fit inside CPU registers. We would have to split them,
would cause a considerable slowdown in the encryption process. So 128-bit blocks is what most good block
ciphers use.

2

AES and DES

DES (data encryption standard) is a block cipher developed at IBM in the mid 1970s with help from the NSA. It
was the most widely used block cipher up until the early 2000s. It uses a 56-bit key, which was a compromise
between the 64-bit key IBM wanted and the 48-bit key the US government wanted. Interestingly, though the
NSA weakened the cipher by shortening the key, they strengthened it against a technique called differential
cryptanalysis, which was not a publicly known technique in the 1970s.

That 56-bit key was large enough that probably the only organization at the time that could do a brute-force
search of all the keys was the US government. However, computing power exploded exponentially in the
intervening decades, and in the late 1990s, the Electronic Frontier Foundation built a machine that could
complete a brute-force search in a few days’ time. It cost about $250,000. Nowadays, a single GPU costing
around $1000 can break DES keys in a few weeks’ time.

To address this, people starting running DES three times in a row with different keys. This is known as triple
DES or 3DES. Three encryptions in a row would seem to give a 3 · 56= 168 bit key, but because of something
called a meet-in-the-middle attack, 3DES only has 112-bits of security. This, however, is still well beyond the
limits of brute-force. But 3DES isn’t considered a very good cipher anymore. Part of the problem is that running
DES three times in a row is slow. Another part of the problem is that DES uses a 64-bit block size. That was fine
in the 1970s, but as we saw above, it’s not ideal anymore.

Recognizing the problems with DES, in the late 1990s the US government sponsored a contest to come up with
a replacement. Cryptographers from around the world submitted entries and tried to break others’ entries.
Many of them turned out to be breakable, but there were five good ciphers that were selected as finalists. The
winner, called Rijndael, was renamed as AES, the Advanced Encryption Standard.

AES is still considered to be the standard today. Despite over 20 years of trying, no one has found a viable direct
attack on the algorithm. There are indirect attacks called side-channel attacks that rely on weaknesses of how
the algorithm is programmed or implemented by humans, but almost any cipher can suffer from these. We will
talk more about them later.

To give you a rough idea of how AES works internally, it uses what’s called a substitution-permutation network.
It involves many carefully chosen substitutions and permutations, along with steps to mix in the key. There are
many rounds of this. To try to encrypt a single block with AES by hand would probably take you the better
portion of a day. AES uses 128-bit blocks. It can be used with keys of size 128, 192, or 256 bits. It was designed
with speed in mind, so it is very fast. In fact, modern CPUs have special instructions designed just for AES.

Block cipher modes

You may have noticed with the Playfair cipher or with the simple block cipher above that the same plaintext
blocks are encrypted to the same ciphertext blocks. This is a major weakness. The picture below, courtesy of
Wikipedia1, is a famous description of why.

1Specifically, the image attribution is to Larry Ewing, lewing@isc.tamu.edu, and The GIMP.

3

On the left is Tux, the Linux mascot. On the right, he has been encrypted with a block cipher. Notice how the
same color regions tend to be encrypted into the same things, leaving the overall structure of the image intact.
This is bad.

Using a block cipher directly like this, without any additional processing, is called electronic code book or ECB
mode. It is very insecure. I’ve heard that the only reason ECB mode was even given a name is so that people can
tell you not to use ECB mode.

To be secure, a block cipher needs a secure mode of operation. ECB mode, as we’ve seen, is not secure. Currently,
the three most important modes of operation are CBC, CTR, and GCM. We will cover the first two here. The last
one requires some high-powered math, so we will just touch on it below.

CBC mode

CBC is short for cipher block chaining. The chaining comes from the fact that each block is sort of tied into or
chained with the block that follows it. This happens by XOR-ing each plaintext block with the ciphertext from
the block before it. CBC mode also requires something called an initialization vector (IV) to disguise the first
plaintext block. Here is a step-by-step description of the process.

1. Disguise the first plaintext block: IV ⊕ P1 = P ′1. Then encrypt P ′1 to get C1.

2. Disguise the second plaintext block: C1 ⊕ P2 = P ′2. Then encrypt P ′2 to get C2.

3. Disguise the third plaintext block: C2 ⊕ P3 = P ′3. Then encrypt P ′3 to get C3.

The process continues in the same way beyond step 3 for the rest of the blocks. Let’s look at an example with a
4-bit block cipher. For simplicity, let’s assume the encryption process is simply given by the lookup table below.

0000→ 1010 0100→ 0110 1000→ 0001 1100→ 1100
0001→ 1110 0101→ 1011 1001→ 0111 1101→ 0000
0010→ 1000 0110→ 0101 1010→ 0011 1110→ 1001
0011→ 1111 0111→ 0010 1011→ 1101 1111→ 0100

We’ll encrypt the plaintext 1001 1111 1101. And let’s go with 1011 for the IV.

CBC mode encryption starts by XOR-ing the IV with the first plaintext block. This gives 1011⊕ 1001= 0010.
Then we encrypt this block using the look-up table to get 1000. This the first ciphertext block.

We then XOR this with the second plaintext block to get 1000⊕ 1111= 0111. We encrypt 0111 using the table
to get 0010. This is the second ciphertext block.

Then we XOR this with the third plaintext block to get 0010⊕ 1101= 1111. We encrypt 1111 using the table to
get 0100.

Finally, we XOR this with the last plaintext block to get 1111⊕ 0100= 1011. We encrypt 1101 with the table to
get 1101. The end result is then 1000 0010 0100 1101.

Below is a convenient way to diagram this process.

plaintext 1001 1111 1101 1111
XOR with this 1011 1000 0010 0100
XOR result 0010 0111 1111 1011
ciphertext 1000 0010 0100 1101

Notice that the second and fourth plaintext blocks are the same, but the corresponding ciphertext blocks end up
different. CBC mode is reasonably secure, and has been used in TLS for a long time, though there is a class of
attacks called padding oracle attacks that have made it less widely used.

4

CTR mode

CTR mode is short for counter mode. It essentially turns a block cipher into a stream cipher. CTR mode uses a
counter variable along with a nonce, which is a number used once, a random number that should not be reused.
The counter is incremented by 1 for each block of the plaintext. The nonce and counter are concatenated
together and that value is run through the block cipher. The result is then XORed with the corresponding
plaintext block to get the ciphertext block.

Let’s look at an example with 8 bit blocks. We will use a very simple block cipher that encrypts blocks by flipping
all their bits and then reversing the block. For instance, 10010000 would be flipped into 01101111 and then
reversed into 11110110.

With CTR mode, the nonce and the counter combined should come out to the block size. For this example, let’s
use a 3-bit nonce 101 and a 5-bit counter. The counter will count up in binary starting at 00000. It will go
00000, 00001, 00010, 00011, 00100, 00101, We will concatenate these to the end of the nonce.

Let’s say our plaintext is 00110101 00001111 01010101 11011010. Here is how the encryption process will go.

plaintext 00110101 00001111 01010101 11011010
nonce+counter 10100000 10100001 10100010 10100011
encrypted nonce+counter 11111010 01111010 10111010 00111010
plaintext ⊕ previous row 11001111 01110101 11101111 11100000

The final ciphertext is the last row, which is 11001111 01110101 11101111 11100000.

Notice how we XOR the first row with the third row to get the ciphertext. This is just like a stream cipher, where
the third row is acting like a stream cipher’s keystream. This is why it’s said that CTR mode turns a block cipher
into a stream cipher.

The nonce should be a random number that is not reused. If it is, then since CTR mode is just like a stream
cipher, we would end up reusing a keystream. This, as we know, is bad news. Also, the length of the counter
should be chosen so that it doesn’t wrap back around. Our 5-bit counter in the example above would repeat
after 32 blocks, which would also cause keystream reuse.

GCM mode

GCM, Galois counter mode, is a variation on ordinary counter mode. It uses some topics from abstract algebra
(an upper-level undergraduate math class) along with ideas from CTR mode. The result has the nice benefit that
it combines encryption and authentication. Not only is the plaintext encrypted, but GCM gives us a way to tell if
the ciphertext was modified in transit by a third party. We’ll cover authentication in greater detail when we get
to hash functions.

Of the three modes, GCM, is currently the most widely used.

