Some Review Material

Important metric time prefixes

When dealing with times in operating systems, it’s important to know the difference between milliseconds,
microseconds, and nanoseconds.

e A millisecond is 1/1000 of a second (.001 seconds). There are 1000 milliseconds in a second.

e A microsecond is 1/1000000 of a second (.000001 seconds). There are one million milliseconds in a
second.

e A nanosecond is 1/1000000000 of a second (.000000001 seconds). There are one billion nanoseconds
in a second.

Each of the prefixes above is a factor of a 1000 away from the previous one. For instance, there are 1000
microseconds in a millisecond and 1000 nanoseconds in a microsecond. Most processors run at a clock
speed of a few gigahertz. That means that means that they can do a few billion simple instructions, like
adding integers, in a second. In other words, each of those instructions runs in a few tenths of a
nanosecond. Most timing things we will be interested in with operating systems will happen at the
microsecond or millisecond range.

Important metric size prefixes

Storage size is typically measured in bytes. Here are important metric prefixes for storage:

o A kilobyte is 1000 bytes.

o A megabyte is 1,000,000 bytes.

e A gigabyte is 1,000,000,000 bytes.

e A terabyte is 1,000,000,000,000 bytes.

Each of the units above is a factor of a thousand greater than the previous. For instance, there are 1000
kilobytes in a megabyte and a 1000 megabytes in a gigabyte. In rare cases you may see even larger prefixes,
specifically peta and exa, which are the next two after tera. These sometimes appear when talking about
the amounts of data transferred over a busy network over a period of time.

CPUs

The central processing unit (CPU) is the key component of any computer. Without one, you really don’t
have much of a computer. Its job is to run instructions which are written in what’s called machine
language. Assembly language is a human-readable version of machine language. Most programs are written
in a higher level programming language and compiled into machine language.! Below is a simple program
written in the C programming language.

#include <stdio.h>
int main() {

int x = 3;

int y = 4;

int z = x + y;

1For some languages, like Python and Java, there is an intermediate program that sits in between.



printf("Sum is %d\n", z);
return O;

Here is the result of compiling it and running it through the Linux objdump command to spit out the
machine and assembly language code. The machine and assembly language code shown here are for x86
processors. Different architectures have their own assembly and machine languages.

1139: 55 push rbp

113a: 48 89 eb mov rbp,rsp

113d: 48 83 ec 10 sub rsp,0x10

1141: c7 45 fc 03 00 00 00 mov DWORD PTR [rbp-0x4],0x3

1148: c7 45 £8 04 00 00 00 mov DWORD PTR [rbp-0x8],0x4

114f: 8b 55 fc mov edx ,DWORD PTR [rbp-0x4]

1152: 8b 45 f8 mov eax,DWORD PTR [rbp-0x8]

1155: 01 do add eax,edx

1157: 89 45 f4 mov DWORD PTR [rbp-0xc],eax

115a: 8b 45 f4 mov eax,DWORD PTR [rbp-0Oxcl

115d: 89 c6 mov esi,eax

115f: 48 8d 05 9e Oe 00 00 lea rax, [rip+0Oxe9e] #
1166: 48 89 c7 mov rdi,rax

1169: b8 00 00 00 00 mov eax,0x0

116e: e8 bd fe ff ff call 1030 <printf@plt>

1173: b8 00 00 00 00 mov eax, 0x0

1178: c9 leave

1179: c3 ret

117a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

The first column are line numbers. The middle column contains the machine language code. Note that it is
a purely numeric language, shown here in hexadecimal. Each machine language command corresponds
directly to an assembly language command shown in the right column. The instructions are things like mov
(which moves a value into a register) and add (which adds two values and stores the result in a register).

Memory

Here is a little about types of memory on a system:

e RAM — Most of a program’s data is stored in RAM.

e Cache — Cache memory used to hold frequently-accessed items. Cache memory is close to the
processor core, and is considerably more limited in size than RAM. Part of this is because cache
memory is expensive to manufacture, and part of it is that its speed depends on its size. The larger
the cache, the longer it takes to locate an item in it. There are various algorithms run by a specific
hardware controller that determine which items get kicked out of the cache when a new item goes in
so as to keep the cache operating efficiently. Cache memory considerably speeds up programs, and
various operating system choices as well as various programming techniques can affect it. Generally,
anything that causes the cache to hold values that are not relevant to the currently running program
can cause serious slowdowns.

e Registers — Registers are small units of memory that sit on the CPU. They are the fastest memory
available, but they are few in number, typically a few dozen to maybe a few hundred, depending on
the architecture. Most CPU instructions involve doing something with values in registers. Some
registers are general purpose registers that can be used for many purposes. Others have very
particular purposes. For instance the program counter (also known as the instruction pointer) holds
the memory location of the current instruction being executed by the processor. Other registers hold
flags that contain important information about the state of the system.



