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File Systems

Files

So what exactly is a file? It’s an abstraction the operating system provides us so that we don’t have to deal with
the nitty-gritty details of converting our data into 0s and 1s, storing those 0s and 1s as magnetic or electronic
impulses on a disk, and then remembering exactly where all of that is located on the disk. The operating deals
with all of that for us. It allows us to bundle our information into an object we call a file, and it keeps track of
where all the information is located on the disk. It also stores metadata about the file, which are things like the
file’s size, last modification date, etc.

In most operating systems, files are given a type that is usually, but not always, indicated by its extension (like
.jpg, .pdf, .docx, etc.). The file’s type is determined by how its bits are stored. For instance, a jpeg image starts
off with some header data followed by RGB values of each pixel. A program that reads jpegs looks at the header
to get the info it needs and then reads the image data. It assumes everything is in a very specific place. If you
open that jpeg in another program, like a text editor, you would just see garbage. A simple ASCII-based text
editor would assume that the bits are arranged in groups of 8, each one corresponding to a specific ASCII
character. When we open a jpeg in such a text editor, it tries to read the bits of the file as if they were ASCII
characters, and we end up getting a weird output since the jpeg is not designed that way.

File systems

The file system is what the OS uses to keep track of files. Each OS has its own system, and that system
sometimes changes from version to version. On Linux some of the common file systems are ext4, ext5, and XFS.
On Windows, there is FAT32 and NTFS. On Mac, there is HFS and APFS. The file system controls things like
naming conventions, where files are stored on the disk, how the system recovers from a crash, etc.

How file systems keep track of which blocks are free on a disk

Space on the drive is broken up into equal-sized regions called blocks. Typically, blocks are a few kilobytes in
size, though the exact value various from system to system.

One technique that is pretty efficient for keeping track of which blocks are free is called a bitmap. Each block of
the disk is represented by a single bit with 0 indicating the block is free and 1 indicating it is occupied. For
instance, suppose we have a very small drive that has 10 blocks, with the first two and last two blocks free and
the others in use. Then the bitmap would be 0011111100.

If the block size is 4 KB and we have a 1 TB drive, then there would be 1,000,000,000,000 / 4000 =
250,000,000 blocks in total. Each block takes 1 bit to store, so dividing by 8 tells us that we would need around
30 megabytes to store the bitmap. There are certain compression techniques that can be used to reduce this
amount. For instance, if a part of our bitmap consists of 500 1s followed by 1000 0s, we could use run-length
encoding to store that as [500,1,1000,0], which takes considerably less space than listing out all those 0s and 1s.

How to store which blocks a file consists of

There are three common approaches that we will cover here.

Approach 1 Store the blocks contiguously. In other words, the file is all in the same place on the disk. This
gives good performance, especially with HDDs, because we don’t have to jump all over the disk with slow disk
seeks. The slow part of HDDs is repositioning the read head and waiting for the platters to spin around. Once
that is done, reading bytes sequentially is relatively fast.
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But there is a serious drawback, namely that as files are continually created and deleted, the disk becomes
fragmented, where there may still be a fair amount of space free on the disk, but it’s all trapped in small
unusable holes between files. In this case, we can defragment the disk, but that’s a slow process, often taking
hours. It’s also unhealthy to use on SSDs. Each cell in an SSD has a limited number of writes before it wears
out, and defragmenting adds excessive wear.

Because of this, storing files contiguously is not used except in very particular use cases. One of those is for
CD-ROMs and DVD-ROMs, which are only written once, so fragmentation is not an issue.

Approach 2 Use a linked list. Here we’ll assume that the file’s blocks are stored all over the disk, not
necessarily all next to each other. At the end of each block, we add a pointer that points to the block where the
next part of the file is stored. For instance, let’s suppose that a file’s data is stored in blocks 1, 3, 9, and 7, in that
order. The linked list approach for this file is pictured below.

Block 1 data Block 3 data Block 7 data Block 9 data

This pure linked list approach is not used because if we only need to read one of the later blocks in the file, we
have to walk through all the earlier blocks, which can be really slow on an HDD, with all the disk seeks that are
involved. Instead, what we do is move the links into a table. For example, suppose the system has blocks 0 to
15, with File A being in blocks 2, 5, 14, 9, and 8, and File B being in blocks 6, 7, and 12. The table would look
like below. In that table 0 indicates a free block, −1 indicates the end of a file, and everything else is a link. For
instance, the entry for Block 2 is 5 indicating that the next block of the file after Block 2 is Block 5.

Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Link 0 0 5 0 0 14 7 12 −1 8 0 0 −1 0 9 0

The file system stores the starting block for each file and then uses the table to locate other blocks. Reading the
table is much faster than walking the blocks on the disk. This table is called a file allocation table. It is the basis
of the FAT file system, which has been an industry standard for years. It is supported by all major OSes and was
the primary file system of DOS and Windows prior to XP. It was extended to a 32-bit version called FAT-32.
Versions of FAT are still used on some USB drives, flash memory cards, and digital cameras. It’s not practical for
large drives as the table becomes too large to store in memory. For instance, a 4 TB drive with 4 KB blocks
would require several gigs of RAM to store the table.

Approach 3 Use Inodes. An inode is a data structure that uses a list to store the blocks that make up a file. For
instance, if a file contains blocks 1, 3, 9, and 7, then the inode would store the list [1, 3, 9, 7]. Often a fancier
data structure like a B-tree is used instead of a list. Inodes also store the file’s metadata. Most modern file
systems use inodes or something like them.

Inodes require less space than a file allocation table. In main memory, we only need enough space for the
currently open files. Note that if a file is large, the list of blocks can get very long, so what is often done is
something analogous to multilevel page tables where the list is not just a list of blocks, but a list of lists of
blocks. To store really huge files, a different system called an extent is used, which is basically a contiguous
block of memory.

Each file is associated with a single inode. Those inodes are stored in a table. In some systems, the total number
of inodes is a fixed (though very large) value, meaning you will never be able to have more than that number of
files, even if you have a lot of space remaining on your drive.
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Layout of a drive

Shown below is the typical layout of a drive.

master
boot record

partition
table

boot block super block bitmap inode table data blocks

Active partition

The master boot record contains info that is used to boot up the computer. The hard drive may be partitioned
into parts for different operating systems. The partition table indicates how the disk is partitioned and which
one is the active partition that the system will boot into. Shown after this is the active partition. Further
partitions aren’t shown in this picture.

In each partition, the first block is the boot block which contains info for booting the OS. Next is the super block,
which contains info about the file system, such as its type, how many blocks are in it, etc. Following that is the
bitmap or whatever data structure is used to keep track of free blocks. The inode table comes next. After that
are the blocks that hold actual data.

Important system matters

Note on deleting files A really important fact to remember is that when you delete a file, its contents are not
immediately wiped from the drive. All that happens is that its blocks are now relisted as free, but their contents
are left as is. Eventually, something new will be put in the those blocks, but until then, the old data is still there.
If you ever need to dispose of a drive that contains sensitive data, there are special tools to run that overwrite
the entire drive multiple times with garbage. And if it is really sensitive data, then the only safe option is to
physically destroy the drive, often by dissolving it in acid.

Crash recovery Whenever a file is created or written to, a lot happens behind the scenes. In particular, here
are three important things that need to be done.

1. The bitmap has to be consulted to find free blocks in which to write the data, and then the bitmap needs
to be updated.

2. The inode needs to be updated with the new blocks that are part of the file and any changes to the
metadata.

3. The actual data needs to be written to the data blocks of the drive.

To save time, rather than do this all at once, often a bunch of disk I/O operations are queued and then done all
at once. Sometimes the actual write operations can happen as much as 30 seconds later. So if the system
crashes in the meantime, you might lose data even if you saved it some time before the crash. And the order of
these I/O operations might be determined by some other part of the OS or by the hard drive firmware, so there’s
no guarantee about the order that 1-3 above will occur in.

One of the important features of a file system is how it deals with inevitable crashes. Bad things can happen if a
system crashes in the middle of a drive write. In particular, if some of steps 1-3 above complete, but not others,
then we can lose data or the file system can become corrupted. Here are a few of the many possibilities that can
go wrong:

1. If the file data is written to the drive, but the inode is not yet updated, then the data that is written to the
drive will not be recorded in the file system and will be inaccessible. Users will see an old version of the
file.

2. If the inode is written, but not the file data, then things are worse. The file system is now corrupted
because the file system will think certain blocks do or don’t belong to a file, and that won’t match what is
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actually on the drive. Users may see garbage in their file. If it’s an executable file, then it may not run at
all.

3. If the bitmap is written but not anything else, then we won’t have an accurate representation of what is
free and what isn’t. If we were writing data requiring new blocks, the bitmap would have those blocks as
being occupied, but if the data didn’t get written before the crash, then those blocks will not have
anything in them. They will be permanently marked as occupied even though they are really free.

4. If the data and inodes are written, but not the bitmap, then we could have a situation where the system
thinks that certain blocks that are part of a file are actually free. Eventually something new might use
those blocks, causing a corruption of the file.

For the last two problems, one solution is to use the inode table to remake the bitmap. This is the approach used
by Microsoft’s scandisk utility and Linux’s fchk.

Journaling, log-structured file systems, and copy on write Journaling is a technique used by some file
systems to help reduce problems associated with crashes. The basic idea is that you write down what you plan
to do before you actually do it. So if a crash happens in the middle of a drive write, you can replay the
information in the journal to make it right.

An issue here comes up if the crash happens while you’re writing the journal entry itself. There are a few things
that can be done to deal with this. One is to write the data first, then write the journal entry, and finally write
the inode and bitmap information. This mostly eliminates the problem of file system corruption. If a crash
happens while writing the journal entry, then we are in situation #1 from the previous section, where we lose
the most recent updates to the file, but the inodes and bitmaps are still consistent. We also need to make sure to
have a special marker to indicate the end of a journal entry so that the system realizes when a journal entry is
incomplete due to a crash.

There are some file systems called log-structured file systems that structure the file system as one big journal
entry along with a table indicating what the current entry is for each file. The tricky part of this is that it tends
to fill up the drive quickly, and then you have to decide which old log entries to delete. This approach is used on
some CD-RW and DVD-RWs as well as some flash memory where the number of rewrites is relatively small.

Some systems, including the newest Apple file system, use something called copy on write. The idea is to never
overwrite old data. Instead always write a new copy. The system deletes copies that are several versions old.

Data integrity

There are a variety of different things that can go wrong when writing to a disk.

One thing is a latent sector error. Recall that a HDD is a mechanical device and sometimes mechanical problems
can happen, like the read head bumping into the surface of the disk. If that happens, it ruins that section of the
disk. Another cause of latent sector errors is cosmic rays. These are a type of electromagnetic radiation usually
emanating from deep space, and they can flip bits on drives (and other places). According to Wikipedia, the
error rate due to cosmic rays is something like 1 error per every 256 megabytes per month, and probably higher
if the drive is at high altitude or in planes a lot. A related issue is data rot. Storage media have a limited lifetime
before they start to break down. Most common options like USB memory sticks, DVDs, and floppy disks can last
anywhere from 5 to maybe 30 years under ideal conditions before the data starts developing errors.

One solution to these problems is to use in-disk error-correcting codes. The idea is that when you write data, you
write some extra information beyond in addition to the data. This is a little like the parity bits used in RAID, but
a different scheme is used. In the case of an error, you can use the extra data to both determine that something
has gone wrong and fix the error. But if the error is too big, then the error-correcting code won’t help, and the
disk read will return an error.

The second type of error is block corruption. This can happen from a bug in the disk’s firmware that causes a
block to be written to a wrong location. The corruption can also happen in the bus as the data goes to the disk.
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The solution here is to use a checksum. This again is similar to the parity calculation used by RAID, though
unlike an error-correcting code, checksums just detect errors; they can’t be used to fix them. The checksum is
stored in the block with the data or possibly somewhere else. When you read the data, you calculate the
checksum and compare it to the expected checksum.

Types of checksums

There are several types of checksums. Here are a few.

1. Simple XOR — Group the data into bits and XOR them together. For instance, if our block is
0010000010100111, we could break it into groups of 4, namely 0010, 0000, 1010, and 0111, and XOR
those groups together. This is just like adding them without worrying about carries. The result is the
checksum (which is 1111 in this case). It is simple and fast and catches all single bit errors. But it misses
some multi-bit errors, such as two flipped bits in the same column.

2. Fletcher’s checksum — Here is the pseudocode for the algorithm:

sum1 = sum2 = 0
for each bit in block:

sum1 += b
sum2 += sum1

check1 = 255 - (sum1 + sum2) mod 255
check2 = 255 - (sum1 + check1) mod 255

This still pretty fast, though not as fast as Simple XOR. It catches all single and double bit errors, as well as
many “burst errors” where a whole group of bits in a row gets corrupted.

3. CRC — This is a nice checksum that is a bit slower than the others, but it catches more errors. The math
behind it is more sophisticated than we can get into here. It is also widely used in networking.

Checksums add some storage overhead. A 4 kb block typically has an 8 byte checksum, which is about a 0.2%
overhead. Computing the checksum also adds some time to each disk read. Sometimes these checks are held off
until a time when the system is not busy. One weakness of checksums is they won’t detect a situation where a
write didn’t take, like if the read head fails to properly magnetize a section of disk. In this case the checksum
that was there from the previous data would still come out correct (for the old data).


