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Concurrency

Here’s a really short Python program:

input('Enter something: ')

If you run this, you’ll see the program sit there and wait for you to type something in. It can’t do anything else
until you enter something. A lot of times we would want our program to be able to do some other work while it
is waiting for input. The tool for doing this is called a thread.

Threads are sort of like mini-processes. They aren’t true processes because they don’t stand on their own. They
are always created by a parent process, and they share the address space of their parent. But they do get
scheduled separately by the OS scheduler, so once the OS context switches away from one thread, another has a
chance to run. On multicore CPUs, multiple threads from a program may be able to run at the same time.

Here is sort of a “Hello World” of using threads in Python:

from threading import *

def f():
print('hello from thread 1')

def g():
print('hello from thread 2')

t1 = Thread(target=f)
t2 = Thread(target=g)

t1.start()
t2.start()

There are two threads, t1 and t2. Each thread has its own code to run given by the target option. The start
method starts each thread running. The OS will choose which thread to run first. In all likelihood, t1 will run
first, but there’s no guarantee of that.

Here is another example. If you want to try running it yourself, it’s easier to copy and paste from the HTML
version of these notes. Copy-pasting from the pdf often messes up the spacing.

from threading import *

def f():
p = 2
while True:

for i in range(2, p):
if p % i == 0:

break
else:

primes.append(p)
p += 1

def g():
while True:

input('Enter something: ')
print('While you were typing, last prime found was', primes[-1])

primes = []

t1 = Thread(target=f)
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t2 = Thread(target=g)

t1.start()
t2.start()

One of the threads in this program is continually generating prime numbers. The other one is continually asking
the user to enter something. Both are running at the same time, sort of. The OS is context-switching back and
forth between them (and other processes on the system).

About threading

Remember that one of the early innovations in operating systems was the realization was that while one process
is doing I/O another can be using the CPU. Threads allow it so that while one part of your program is doing I/O,
another part of your program can be using the CPU. A nice example of this is a program that has to download a
bunch of webpages. If we download them sequentially, then if one of the downloads is slow, all of the
downloads after it will have to wait until it is done. If we do each download in a separate thread, one slow
download won’t affect the others.

On a multicore system, you can use threads in order to have your program run on multiple cores at once.
However, not in Python – Python has this annoying feature called the GIL (global interpreter lock), which is kind
of important to the internals of Python, and it unfortunately makes it impossible for more than one thread to be
running at the same time.

On a single core system, threads will give a speedup if some of them are doing a lot of I/O. But if all your
threads are doing a lot of computation, then threads won’t give a speedup, and in fact can even slow things
down a little because of the overhead of switching processes. On a multicore system, threads will give a speedup
even if they are all doing computation, as long as the number of threads does not exceed the number of cores.

Why threads? Why not just use multiple processes? Threads share their parent’s address space, so it’s easier for
them to communicate with each other. They can share variables. Trying to get two separate processes to
communicate is more painful.

A problem with threading

Here is a very important threading program.

from threading import *

def f():
global count
for i in range(1000000):

count += 1

def g():
global count
for i in range(1000000):

count += 1

count = 0

t1 = Thread(target=f)
t2 = Thread(target=g)

t1.start()
t2.start()
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t1.join()
t2.join()

print(count)

There are two threads, t1 and t2. Each one runs the exact same code. They both add 1 to a global counter
variable 1,000,000 times. In theory, when both are done, the counter should equal 2,000,000. Note that the join
method near the bottom basically says to wait until both threads are done. Once they are both done, the
program prints out the value of count, which should hopefully equal 2,000,000.

Except it doesn’t. I ran the program 5 times and these are the five different outputs I got: 1218764, 1425491,
1335768, 1292715, 1168259. These numbers are quite random. Try the program yourself to see. You’ll end up
getting different numbers entirely. If you do get 2,000,000, then try increasing 1,000,000 to 10,000,000.

Understanding why this weirdness happens is key to understanding what can go wrong with threads and
concurrency. And the solution is probably not something that you would expect. It has to do with the fact that
count += 1 at the machine level is not a single operation. It is actually three operations: load, add, store. First
the system has to load the value of count from memory and put it into a CPU register. Then it adds 1 to that
value, and then it stores that value back in memory.

If a context switch happens in the middle of this process, things can go awry. Suppose thread t1 runs first. It
adds 1 to count a bunch of times until eventually the OS decides to context switch away from it. Let’s suppose
that it gets up to count=8000 and is about to add 1 to the count. So it loads the value of count into a register,
adds 1 to get 8001, and is just about to store that value back in count, when the context switch happens. The
OS puts thread t1 into a state of suspended animation at this point. It’s frozen right before it can update the
value of count to 8001.

Suppose that the context switch takes us to thread t2. It reads the value of count, which is currently 8000 and
starts adding 1 to it. Maybe it gets to run for 10000 iterations and when the OS context switches away from it,
count is now up to 18000. Then the OS context-switches back to t1. It picks up where it left off, which was to
write the value 8001 into count. It does that, and with that all of the work t2 did has been erased! The count
variable is now at 8001 instead of 18001.

This is precisely what causes the random output when we run the program above. Sometimes the context
switches happen at okay times and nothing bad happens, but sometimes they happen in the middle of a
count += 1 operation and then progress is lost. So instead of getting to 2,000,000, we end up getting to some
value considerably less, like 1,218,764. Here is what happens in the order it happens:

1. Thread 1 runs first and adds 1 to count 8000 times. So the count is 8000.

2. Thread 1 gets interrupted in middle of an addition. It is frozen in between adding and storing the new
value 8001.

3. Thread 2 runs and adds 1 to the count 10,000 times. The value of count is now 18000.

4. Thread 2 is interrupted and Thread 1 gets to run again.

5. Thread 1 finishes what it was trying to do earlier, which is to store 8001 in count. All of Thread 2’s work
is therefore destroyed.

This is our first example of what is called a race condition. A race condition is a programming problem where the
output of the program is dependent on the exact state of a the computer or a particular sequence of events. In
this case, the results of the program vary depending on exactly when the OS decides to context switch between
threads.

Locks

Race conditions often arise when two or more threads share a common resource. In this case, the common
resource is the count variable. The part of the code in which the shared resources is accessed is called a critical
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section. In this example, it’s the count += 1 line.

The solution to this problem is some type of mutual exclusion, where only one thread is allowed to be in the
critical section at any given point in time. We will learn several ways to accomplish this. The first way is called a
lock. Here is how we would use the lock in counting program above:

def f():
global count
for i in range(1000000):

lock.acquire()
count += 1
lock.release()

def g():
global count
for i in range(1000000):

lock.acquire()
count += 1
lock.release()

count = 0

lock = Lock()

t1 = Thread(target=f)
t2 = Thread(target=g)

t1.start()
t2.start()

t1.join()
t2.join()

print(count)

We create the lock with the line lock=Lock(). In each of the two functions, we surround the critical section,
count += 1, with lock.acquire() and lock.release(). This guarantees that only one thread can ever be
updating the count at any one time. What happens is whenever one of the threads wants to update the count
variable, it first checks if the lock is set. If it isn’t set, then it sets the lock, goes into the critical section to update
the count, and then unsets the lock. If the lock is set, then the thread will have to wait until the lock is free
again before it can enter the critical section.

How locks are implemented

Because this is a course in OS, we want to know how the OS actually does this locking procedure. One way is
called test and set.

The basic idea is the operating system uses a boolean flag variable for the lock. When a thread wants to enter
the critical section, it checks if the flag is true or not. If it’s false, then it enters the critical section and sets the
flag to true. When exiting, it sets it back to false again. If the flag is true when it wants to enter the critical
section, then it waits for the flag to become false before entering.

A nice analogy for this is a porta-potty. You never want more than one person at a time in one of those things.
They have a little sign on the front that indicates if it is occupied or not. When someone wants to use the
porta-potty, they check if it’s free, go in if it is, set the sign to busy, and when they’re done, they set the sign back
to free. If the porta-potty is busy, then the person will wait until it becomes free before going in.
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There is still a potential race condition with test and set. What if the thread checks the flag, sees that it’s true,
and right before it can set the flag to true, it gets interrupted by a context switch? Another thread then gets to
run and goes in the critical section. A context switch back to the first thread happens, and it picks up where it
left off, which was to set the flag to true and enter the critical section. Now we have two threads in the critical
section.

In the porta-potty example, this would be like Person A checking the occupied sign on the porta-potty and
seeing it is set to unoccupied. Just as they are about the enter, they get distracted by a text on their phone.
While they are distracted, another person walks into the porta-potty. After Person A is done with their text, they
go into the porta-potty without looking at the sign (because last they checked it said it was unoccupied). And
now there are two people in there.

The solution to this is that a lot of CPUs have a specific instruction that does a test-and-set operation in a single,
atomic operation. “Atomic” means that it can’t be broken up. The test and the set both happen at the same time
and no context switch can come between them.

Spin locks and futexes

Locks are usually implemented as either spin locks or as futexes. They differ in what they do if the flag is set.
With a spin lock, a thread will sit and “spin” waiting, constantly checking the flag to see if it’s false. With a futex,
the process will go to sleep and wait for the OS to notify it when the flag becomes false. In fact, the OS puts all
threads waiting for the lock on a queue.

Sticking with the porta-potty example, a spin lock is where someone waiting for the porta-potty sits and stares
at it until the sign says it is unoccupied. A futex would be where there’s an attendant (the OS) who will send
you off to a waiting room and come to get you when the porta-potty is free again.

Here are some pros and cons of each approach:

• Spinning can be really wasteful on a single core system, especially if there are several threads all waiting
for the same lock. For example, suppose we have threads A, B, C, D, and E, and the OS is running them
round-robin. Let’s say A has the lock and the others all want it. So A is running for a while and then its
time slice ends while it is still using the lock. The OS switches to B. B will spend its entire time slice in a
while loop constantly checking the lock to see if it’s free. Of course it won’t be free because it can’t be
freed up until A gets to run again. So that whole time slice is just wasted CPU cycles.

Similarly, C, D, and E all waste their time slices. If each has a 20 ms time slice, then 80 of the 100 ms are
totally wasted with no useful computation getting done. However, with a futex, all the other threads
would be asleep, and A would get to run until it was done with the lock, at which point the OS could wake
up the others. There would not be any CPU cycles wasted spinning.

• Spin locks can also be unfair. If there are several threads all waiting for the same lock, the one that gets it
first will depend on whatever is happening with the OS scheduler. With a futex, the queue is first-come,
first served.

• Spinning is easy to program and doesn’t require much special work from the OS. A futex requires the OS
to setup and maintain a queue. This setup can be expensive in terms of CPU cycles. If the lock is only held
for a short while, especially on a multicore system, this overhead can be more trouble than it’s worth.

Both approaches are used in modern operating systems.


