
1

The Data Link and Physical Layers

We will meander our way through both the data link and physical layers here, jumping back and forth between
the two. While the network layer is concerned with how to route things so they eventually get to their
destination, the data link and physical layers are concerned with the actual details of transferring data from one
machine to the next. At this layer, the stuff being sent over the network is broken up into chunks called frames.
At layer 4 the chunks are called segments, at layer 3 they are called packets, and here they are called frames.

Some basic concepts

Bandwidth Bandwidth is, roughly speaking, how much stuff you can send in a given amount of time. It’s
measured in bits per second. The numbers can get very large, in the millions of bits per second, so it’s often
measured in megabits per second (Mbps), where mega is the prefix for 1 million. Here are the common metric
prefixes that are used.

kilobits/sec (Kbps) 1000 bits/sec
megabits/sec (Mbps) 1 million bits/sec
gigabits/sec (Gbps) 1 billion bits/sec

The term “bandwidth” is often used in another context in networking, which has to do with a range of
frequencies in a signal. That range of frequencies turns out to be related to this other use of the term.
Sometimes, people use the term data rate instead of bandwidth when they want to make this distinction.

A related term is throughput, which measures the actual amount of stuff that can get through in a given amount
of time. Bandwidth is more like the theoretical maximum amount that can get through, but various issues
usually keep you from maxing things out.

Latency Latency is how long it takes something to get from the sender to the receiver. Latency is usually
measured in fractions of a second. The most common are milliseconds, which are 1/1000 of a second or .001
seconds, and microseconds, which are 1/1000000 of a second or .000001 seconds. Latency is affected by several
factors.

• Propagation delay — Nothing can travel faster than the speed of light, which is around 186,000 miles per
second. For instance, it’s about 2800 miles from Emmitsburg to San Francisco. Since 2800/186000= .015
seconds, or 15 milliseconds. It is physically impossible to get information from Emmitsburg to San
Francisco any faster than this. In fact, that 186,000 miles per second is the speed of light in a vacuum, like
when it travels through space. In wires or through the atmosphere, we usually only get to maybe about
2/3 of that. Propagation delay can be as low as .001 microseconds (a nanosecond) when data has to
travel 1 foot. If you’re sending data across the solar system, it can be minutes or even hours long. For
most network communications, it ranges from a few microseconds to a few milliseconds.

• Processing delay — Routers have to spend some time reading packets, processing headers, computing
checksums, and deciding where to forward the packet. This usually takes a few microseconds.

• Queueing delay — When a packet reaches a router, chances are the router may be busy processing another
packet, so it will have to wait. It’s placed in a queue, with other packets possibly waiting ahead of it. The
time it has to wait before being processed is the queueing delay. Depending on how busy the router is, this
can range anywhere from microseconds to milliseconds.

• Transmission delay — A packet has a certain size, and all of the bits of the packet are not put onto the line
at the exact same time. Think about the bits being put on in a row, one after another. The transmission
delay is the time it takes to put all of the bits on the line. There will therefore be a delay between when
you receive the first bit of a packet and when you get the last bit. You can calculate it by dividing the
packet length by the bandwidth. For instance, if we have a 1000-byte packet on a 10 Mbps connection,
then the transmission delay is (1000 · 8)/10000000= .0008 seconds, which is a little under a millisecond.

2

This is a typical amount of time for transmission delay. Note that the 8 in the calculation comes because
the packet size is in bytes but the bandwidth is in bits, and there are 8 bits in a byte.

A nice analogy for bandwidth and latency is to think of a pipe carrying water. Bandwidth corresponds to how
thick the pipe is, which measures how much water can get through. Latency corresponds to how long the pipe
is, which tells us how long it will take the water to get to the other end. Note also that if you multiply
bandwidth by latency, it gives a measure of how much data can fit on the line.

Types of transmission media

Twisted pair Twisted pair wires are the familiar wires used for phone wires and Ethernet cables. Each strand
contains two copper wires that are twisted around each other. The reason for the twisting is that a long, straight
wire acts a lot like an antenna and will pick up all sorts of noise and interference. Twisting two wires around
each other helps reduce that.

Ethernet cables use twisted pair. They come in a few different varieties, namely CAT5, CAT5E, CAT6, CAT6A,
and CAT7. Plain CAT5 is old and hard to find. CAT5E is still pretty common. It’s cheap and easy to work with.
CAT6 is a little harder to work with and it’s more expensive, but it’s faster. CAT7 is fairly new. All of them have
the same RJ45 connector at the end. Bandwidths on twisted pair range from around 10 Mbps to 10 Gbps
depending on the thickness of the wire. The signal degrades the longer the wire is, with a maximum typically of
no more than a few miles.

People often get internet access over their phone lines. The slowest type is dialup, with speeds limited to around
50 Kbps. Phone lines have filters on them which are optimized for the human voice, and those filters severely
limit the bandwidth. When they are removed, you can get a faster connection. This is what DSL (digital
subscriber line) uses.

Coaxial cable Coaxial cable, or coax, consists of a central copper wire with a copper shield around it and an
insulator between them. The shield acts in a similar way to a Faraday cage in that it shields the central wire
from outside interference. This allows coax to run for longer distances than twisted pair. Bandwidth is typically
in the 10s to 100s of Mbps. It’s typically used for cable internet, but it can be used in many other applications.

Fiber optics Fiber optic lines carry a signal using visible light. The wires themselves are made of glass and the
light rays bounce around inside the glass wires. Light rays can carry a lot of information, giving fiber optics a
potential bandwidth in the 10s to possibly 100s of Tbps (terabits/second). A terabit is 1000 gigabits. However,
the technology isn’t quite good enough yet for this, so typical bandwidths are in the 10s to 100s of Gbps.
Because the wires are glass, they are fragile and considerably harder to work with than copper wires. Fiber
optics are used for much of the internet backbone, and it is seeing some business and residential use.

Wireless Common wireless technologies include Wi-Fi, cellular service, Bluetooth, and satellite. It works on
the same principle as radio. The main idea is that certain physical processes generate things called
electromagnetic waves (EM waves). We can think of the wave like the graph of the sine functions shown below.

3

Two important properties of a wave are its height (called its amplitude) and its frequency, which is how far
apart the peaks are spaced. The wave above on the left has a higher amplitude but lower frequency than the one
on the right. Frequency is usually measured in Hertz, which is the number of peaks or cycles per second that
will pass by. For wireless communications, usually we use Megahertz (MHz) or Gigahertz (GHz).

Waves can be used to carry information. The base wave is called a carrier wave, which is shown below on the
left. The signal is carried by making small changes to the height of the carrier wave, like shown on the right.
When we subtract out the carrier wave, what is left is the signal. This process is called amplitude modulation and
it is the principle behind how AM radio works. A similar process called frequency modulation uses small changes
in the frequency to carry information. This is the principle behind FM radio.

The EM spectrum starts with radio waves at the lowest frequencies, beyond radio waves come microwaves, then
infrared, then visible light, then ultraviolet rays, then X-rays, and finally gamma rays at very high frequencies.
Each of these can carry information as described above. The lower frequencies have less bandwidth and can’t
carry as much information. But they travel farther and can move through obstacles better than higher frequency
rays. For instance, visible light has a very high bandwidth, but as we know it’s blocked by all sorts of real-life
objects, so it doesn’t work well for wireless communication. However, fiber optics get around this by sending the
light rays through a wire.

The sweet spot between distance and bandwidth is right in the upper radio wave and lower microwave ranges.
These are frequencies from roughly 100 KHz to 100 GHz. Communications on these frequencies are highly
regulated by governments because this range is so valuable. A lot of the range is reserved for things like radio
and TV, as well as military communications. Each government has their own rules for these things. If you send a
signal on an unauthorized frequency, you might get a visit from the FCC if your signal causes problems for
people. Wi-Fi uses small frequency bands that are unregulated. They share that range with other things like
baby monitors and garage door openers, so interference is a real problem for Wi-Fi.

Media Access Control

Media access control or (MAC) is about how several parties can all share the same medium. That MAC is the
same one as in MAC addresses. If two parties both send signals down a wire or through the airwaves at the
same time, then their signals can interfere with each other and you just get a garbled mess. It’s a little like when
a bunch of people in a room all start talking at once. MAC protocols are designed to control who has access to
the medium to avoid this problem.

The main solution used in modern networking is carrier sense multiple access (CSMA). The basic idea is if you
want to use a line (wire, airwaves, or whatever), you first check to see if the line is free. If it’s not, then keep
checking until it is free. Once you see it’s open, then you can start transmitting. There are several problems with
this.

1. If both you and someone else are waiting to see if the line is free, then once it becomes free, you would
both start using it at the same time and interfere with each other.

2. Because of propagation delay, if a line is long enough, it might look like it’s free to you, but in fact
someone farther down the line might be using it and their stuff just hasn’t made it to you yet.

4

3. In wireless, there is the hidden node problem, which is pictured below. The circles indicate the range in
which B and C’s signals can be heard. Each can see A, but they can’t see each other. So if B were
transmitting, C would check and not see anything happening and would think it’s okay to send things to
A. But that transmission will interfere with C’s once it gets near A.

B CA

CSMA/CD One solution to these problems is CSMA/CD, where the CD stands for “collision detection”. This
was used by older Ethernet networks, though it’s not used on modern switched Ethernet networks.

You start by listening to see if the line is free. If it is, then you can start transmitting, but while you do, you listen
to the line to see if there is anything else on the line that’s not yours. If there is, then that’s a collision. So you
stop transmitting your data and send a jamming signal on the line. Other people transmitting will see that signal
and know that a collision has taken place. If the line is really long, it’s possible that someone could finish
transmitting before the jamming signal reaches them, so to avoid this, Ethernet lines were limited in length.

Everybody then stops and waits a random amount of time before trying to transmit again. Initially, each
randomly picks either 0, 1, 2, or 3 time units to wait. A time unit is a few microseconds. It’s possible that two
people pick the same random wait time and another collision happens. If this happens, then same process is
repeated, but now the wait time could be 0, 1, 2, 3, 4, 5, 6, or 7 time units. If still another collision happens,
then the random range is increased still further to 0 to 15 time units. It keeps doubling like this until a
maximum range of 0 to 1023 time units. This process is called exponential backoff.

CSMA/CA Another solution is CSMA/CA, where the CA is “collision avoidance”. On wireless networks, it’s not
feasible to listen to the line while you’re transmitting, like in CSMA/CD. The problem is that the signal you’re
transmitting will be much louder than the signal you would be hearing from others, so there’s no way you would
be able to hear it. CSMA/CD starts with listening to see if there is anyone else transmitting. If not, you wait a
short random amount before transmitting. This is like the random backoff used in CSMA/CD, except it happens
even without a collision. This helps when two people are waiting for a third to finish transmitting so that they
don’t both start at the same time. If the transmission makes it through, the receiver will then send back an ACK
(acknowledgement). If you don’t get the ACK, then you assume a collision happened and resend after waiting a
random amount of time similar to the exponential backoff used in CSMA/CD.

RTS and CTS A third solution is to use request to send (RTS) and clear to send (CTS) messages. This for
wireless, where there is a base station (such as a Wi-Fi access point) that everybody sends their stuff to. You
send a short RTS message to the base station to ask for permission to transmit. The base station then sends you
a CTS that clears you to be able to transmit stuff. Others see this and know not to transmit since it’s your turn.
This helps with the hidden node problem, but it turns out to add a lot of additional overhead which slows things
down.

Ethernet

“Ethernet” is an old trade name. Ethernet has been formally standardized as IEEE 802.3, and you will
occasionally hear people refer to Ethernet by that name. Ethernet was invented back in the 1970s at Xerox
PARC, along with many other parts of modern computing like modern GUIs and laser printing. There were
several other competing technologies over the years, some of which were better than Ethernet in a technological
sense, but Ethernet was cheap and easy to use, so most wired networks now use it.

Ethernet has changed considerably over the years. Originally, it used a bus topology, where there was one long
line of cable and computers were attached to it at regular intervals along the line. Everyone shared that same

5

line. You could see everyone else’s traffic if you wanted to, though you were only supposed to look at the traffic
that had your own MAC address. In the 1980s people started to use the existing phone lines in buildings to
build Ethernet networks. This was easier than running the special coax cable that the original Ethernet needed.
In these new networks, it was hard to find where the wiring went bad if someone lost connectivity, so hubs
started to be used. Here each computer would be wired into the hub, and you could wire hubs together. The
topology associated with this is either a star topology for everyone connected to one hub or a tree topology. See
the figure below for examples of what these topologies look like.

Bus Star Tree

Switches Modern internet uses switches instead of hubs. When a packet comes into a hub, it broadcasts it to
all the devices connected to it. Besides being inefficient, it also means everyone can see everyone else’s traffic.
Switches are smarter than that. They only send traffic to the device its destined for. Switches are self-learning;
when you plug one in, it automatically learns where to send stuff.

Here is how it works. When we first plug a device into a physical port on a switch, it doesn’t know anything
about that device. However, when that device first decides to send a packet out, the switch will observe the MAC
address on that packet and record in a table that the device at that specific port has that particular MAC address.
Then when packets come into the switch, it looks at its table and knows which port to send things out on. Note
that the ports are not the same ports as in layer 4. These are actual physical places where an Ethernet cable gets
plugged into.

Using switches now means collisions are no longer a problem. We don’t need to use CSMA/CD or anything else.
In the old bus topology everyone all shared the same line. Now, each device is plugged into a switch at its own
port. It never sees any of the other devices (or their traffic). The terminology used is collision domain. In the bus
topology, everyone was on the same collision domain. Now everyone is in different collision domains because
the switches keep everything separate. Switches started to become widely used in the 2000s. Before that, they
were too expensive. They are still expensive, but not as bad as they used to be.

Structure of an Ethernet Frame The first part of the ethernet header is a preamble. This is an alternating
sequence of 62 0s and 1s, followed by two 1s. The purpose of this is to help the sender and receiver synchronize
their clocks. Data is sent very quickly, with millions or billions of bits a second, so the sender and receiver need
to be in sync or else they won’t understand each other. This alternating sequence helps with that. The last two
bits are 1 to indicate that the preamble is over.

Following the preamble are the destination and source addresses, which are both 48 bits. After that is a
type/length field whose meaning has varied over the years. It either indicates the length of the message or what
type of Layer 3 traffic it is carrying.

The data comes next. There can be up to 1500 bytes of data. Padding is there in case the message is too short. If
a frame is too short, then it’s possible that if there’s a collision, the sender could be done sending before the
jamming signal reaches them and not realize that a collision happened. The last part of the header is a
checksum. It serves a similar purpose to the checksums at higher layers, but it uses a different type of checksum
called CRC-32 (CRC stands for cyclic redundancy check).

Spanning tree protocol The Spanning Tree Protocol (STP) is used to avoid routing loops in a network. A
routing loop is where packets get bounced back and forth between the same few routers continuously, such as a
packet getting forwarded from A to B to C to A to B to C to A

A spanning tree in a graph is a subset of the vertices and edges that includes all the vertices (spanning) and

6

contains no cycles (is a tree). We want it to be spanning so that everyone can reach everyone else, and we want
it to have no cycles so that routing loops can’t happen. In STP, routers talk to each other in a similar way to what
they do in RIP, telling other routers information about what they are connected to. Everyone uses this info to
build a spanning tree basically by “turning off” specific edges by agreeing not to use them to send data. See
below for some graphs with spanning trees highlighted.

VLANs A VLAN is a virtual local area network. In an ordinary LAN, devices are all wired together. A VLAN is
designed to look like a regular LAN, but the devices don’t all have to be physically connected.

Software-defined networking This is a fairly new concept in networking. Instead of relying on physical
routers and switches to determine where traffic goes, we can use software to control those devices. This allows
for more sophisticated ways of moving traffic around a network.

Error detection and correction

Errors in transmission can be pretty common, especially at the lower layers, so it’s important to have a way of
catching them. Error detection is typically done with checksums. Here is an example to demonstrate the idea.
Assume the data being sent is in binary. We add up all the 1s, and our checksum is 0 if there are an even number
of 1s, and 1 if there are an odd number of 1s. This type of checksum is called a parity bit. The sender computes
this checksum and sends it along with the data to the receiver. When the receiver gets the data, they compute
the checksum on the data and see if they get the same checksum as what the sender sent. If they are different,
then we know there was an error. For example, suppose we have the situation below. Notice that a bit gets
flipped in the transmission. The checksum catches it because the number of 1s goes from odd to even.

data parity bit
what the sender sends 01100001101 1
what was actually received 01100101101 0

This simple parity bit calculation won’t catch all possible errors. If two bits both get flipped, then they will
cancel each other out in the parity, and the checksums will come out the same. In general, this scheme catches
any time an odd number of bits are flipped. It also will miss transposition errors, where adjacent bits come in
the wrong order.

A better checksum is CRC-32. It catches all burst errors up to 31 bits in length. Burst errors are a common type
of error where things get messed up for a bunch of bits in a row. CRC-32 also catches many types of
transposition errors. The math behind CRC-32 is a little more complicated than we can get into here, as it
involves material from an upper-level undergraduate course in abstract algebra. CRC-32 is fast to compute and
is 4 bytes in size. Since devices can often get millions of frames in a second, we want it to be very fast, and since
the checksum is attached to every frame, we don’t want it to take up too much space.

Error detection just tells you if an error happens. After that, the frame will have to be resent. A related
technique called error correction allows us to correct errors without having to resend a frame. Techniques like
Hamming codes are often used for this. Just like a checksum requires us to send some extra data to check for
errors, error correction requires us to send even more data. This can be enough to cut down on the efficiency of
the line, so error correction is used in situations where errors are common, like in wireless communications.

7

Error detection is used when errors are not very common, like in Ethernet. There’s a cost-benefit analysis that
needs to be done to determine if the extra data needed for error correction averages out to be more or less than
the extra work needed to resend lost frames.

Wi-Fi

Wi-Fi is a trade name for a wireless communications system that we’re all familiar with. People often refer to it
by IEEE 802.11, which is the name of the set of standards that define Wi-Fi. The original standards were
802.11a and 802.11b. Various new standards have been introduced, the most important of which are 802.11g,
802.11n, 802.11ac, and the new 802.11ax. Each new standard generally provides faster data rates due to
improvements in technology.

Bands and channels Wi-Fi most commonly uses the 2.4 GHz and 5 GHz bands. These are unregulated, so
they are available for use as long as you don’t use too high of a power in your transmissions. The 2.4 GHz band
has better range, but lower bandwidth. Each band is broken into channels. These are subdivisions of the
frequency band. The concept of channels here is the same as for TV channels.

The 2.4 GHz band has channels 1 to 14, though not all channels are available in all countries. Channels 1–11
are available in the U.S., and 12 and 13 are available only in low power mode. Channel 1 is specifically at
frequency 2.412 GHz, channel 2 is 2.417 GHz, and each goes up by .005 GHz from there. Nearby channels
interfere with each other, so if you’re running a Wi-Fi network, you wouldn’t want it to use both channels 1 and
2 or 1 and 3, for instance. Channels that are 5 or more apart don’t interfere much with each other. For this
reason, channels 1, 6, and 11 are commonly used, and the others not so much.

The 5 GHz band has a wider variety of channels. They are 36 in the range from 36 to 64, 100 to 140, and 149 to
165, going up by fours (so 36, 40, 44, etc.).

Security Wi-Fi provides security to encrypt your communications. The original standard was WEP (wired
equivalent privacy). It turned out to be badly broken, and free tools like Wireshark can break the encryption in a
matter of minutes. As a stopgap measure, WPA (Wi-Fi protected access) was introduced. After a few years, a
better version called WPA-2 was introduced. This is still the dominant type of security, though WPA-3 was
recently introduced and will start taking over.

Vocabulary and types of frames Wi-Fi networks generally have an SSID (service set identifier). This is the
Wi-Fi network’s name. It’s what shows up in your OS’s window of available networks. It’s possible to turn off the
SSID so that your network won’t show up, but anyone can still find it using freely available software.

Usually a Wi-Fi network has an access point (AP), which everyone on the network communicates with. That AP
is usually connected to a wired network. When devices connect to the AP the process is called associating. The
AP sends out beacon frames every tenth of a second or so. This contains info like the network’s data rate, the
type of security, the AP’s MAC address, and the AP’s SSID. The beacon frame is basically the AP announcing
itself so that others know it’s there.

Related to beacons are probe requests. These are sent out by computers and phones looking for networks they’ve
previously been connected to. This is how your device will automatically connect to a network it knows once it’s
in range. The problem with this is that your device is constantly broadcasting the names of all the networks it
has previously been connected to. These broadcasts can be picked up pretty easily, say by running Wireshark in
monitor mode. Chances are the list of networks your phone has been connected to is unique to you. So if
someone knows this, they can use this to know when you’re nearby, and they can also use this to see where
you’ve been since the SSIDs often are pretty descriptive.

Wi-Fi has a number of other management frames besides beacons and probe requests. One of the most
interesting is the deauthentication frame, which is used when an AP wants to boot you from a network. The

8

problem is that these can be easily spoofed. That is, someone can construct a deauthentication frame to make it
look like it came from the AP, and they can use that to boot people off of a network.

Odds and ends

Circuit switching versus packet switching When the internet was first being developed, there was a debate
as to whether it should be a circuit-switched or a packet-switched network. The phone system at the time was
circuit-switched. When you made a call, there was a direct line that ran from your phone to the phone company
office. There an operator or a switching system would patch some cables together and the connection would
then run from the phone company office over to the other person on the call. So there was a continuous line
that connected you two, and that was your line for the duration of the call. No one else would use it.

In packet switching, everyone shares the same line. They break their communications into chunks of
information called packets, and everyone would put their packets on the line. Header information such as
addresses and port numbers would be used to help tell whose traffic was whose and how it should all be
forwarded to their destinations.

Packet switching won out over circuit switching, and it’s hard to imagine how today’s internet could exist in a
circuit-switched network considering the trillions of connections that happen daily.

Multiplexing Multiplexing is a networking concept that generally is about multiple things being carried all
over the same line at once. At layers 1 and 2, there are a few ways this can work.

• Time division mutiplexing (TDM) — This is where everyone wanting to use the line takes turns. During
those turns, they get the full use of the line. For instance, maybe A gets the line from time 0 to .1, then B
gets it from .1 to .2, then C gets it from .2 to .3, then A gets it again from .3 to .4, etc.

• Frequency division multiplexing (FDM) — This is where everyone sends their stuff on different
frequencies. An example is radio, where the Mount’s radio station is at 89.9 MHz, Gettysburg College’s
station is at 91.1 MHz, etc. Another example is on fiber optic lines. Different frequencies of light
correspond to different colors. So it would be a little like person A getting to use the red band, person B
getting to use the blue band, etc., though in practice it’s more complicated than that.

• Code division multiple access (CDMA) — In this, each person gets their own random sequence called a
chipping code. We take the exclusive or (XOR or ⊕) of the signal with the chipping code. The XOR
operation is defined such that 1⊕ 1= 0, 0⊕ 0= 0, 0⊕ 1= 1, and 1⊕ 0= 1. Basically, it’s 1 if the two
things being XOR-ed are equal and 0 if they are different. XOR-ing the chipping signal in a second time
will undo the first XOR and give the signal. We use the different chipping codes to tell the different signals
apart. CDMA is used in 3G phone networks.

Tanenbaum’s and Wetherall’s excellent book Computer Networking has a nice analogy for all this to a room full
of people talking. TDM is where everyone takes turns talking. FDM is where everyone talks at different pitches.
CDMA is where everyone talks in a different language.

Converting data to signals

The 0s and 1s of digital data need to be converted into electrical impulses in order to physically send the data.
This is the job of your network adapter. One way of doing this is to consider a data value of 0 as a low voltage on
the line and 1 as high voltage, like pictured below. The high spots correspond to 0s and the low spots to 1s.
We’ve shown things a little fuzzy like this to indicate that electrical signals will not be perfect.

9

There are a couple of difficulties we run into with this system:

1. How will we distinguish between a run of say five 0s in a row versus a run of six 0s? The solution is to use
a clock.

2. How will we know what a high voltage is and what a low voltage is? When we’re communicating with
someone far away, their signal will be weaker than someone nearby. To distinguish things, the system
maintains a running average of what it’s seen over time to help it distinguish between low and high.

A lot of real data has long runs of 0s and 1s. Often this happens randomly, but it can also happen due to the
patterns in the data. For instance, a large black area in an image might translate to a long run of 0s. These long
runs can mess with both of the things described above. During a long run, the clocks of the sender and receiver
can get out of sync. And a long run of 0s or 1s will skew the running average, making it harder to tell what
voltages are low and high. So we need to do something to prevent long runs of 0s and 1s. There are a few
different approaches.

Non-return to zero (NRZ) This is where we encode 0 as a low voltage, 1 as a high voltage, and don’t do
anything to deal with long runs of 0s and 1s.

Non-return to zero inverted (NRZI) In NRZI, we encode a data value of 1 by switching from either low to
high voltage or from high to low. We encode a 0 by staying at whatever voltage we are currently at. So when a
receiver sees the voltage switch from one clock cycle to the next, that indicates the data is a 1, and if there is no
switch, that indicates a 0. NRZI will break up long runs of 1s, but not long runs of 0s. So NRZI isn’t too useful
by itself, but it is used in the 4B/5B scheme below.

Manchester encoding This uses the clock signal to help break up long runs. Think of the clock as continually
alternating between 0 and 1 at twice the rate of the data. Manchester encoding takes this clock value and XORs
it with the data. Here is an example. Suppose we have the data 01111000010. We double each bit below and
then XOR these with the clock values.

data 00 11 11 11 11 00 00 00 00 11 00
clock 01 01 01 01 01 01 01 01 01 01 01
output 01 10 10 10 10 01 01 01 01 10 01

This guarantees we won’t ever get more than two 0s or 1s in a row. However, the drawback is we have to send
twice as much stuff, making it only 50% efficient. Manchester encoding was used in the original Ethernet, and
it’s currently used for RFID chips and some other things.

4B/5B encoding There are 16 possible 4-bit strings, namely 0000, 0001, 0010, . . . , 1111. And there are 32
possible 5-bit strings. 4B/5B encoding replaces each 4-bit string with a carefully chosen 5-bit string. These
strings are chosen so that they never start with more than one 0 and never end with more than two 0s. This
means that if you put two of them side-by-side, you will never get more than three 0s in a row. Here are a few of
the replacements:

10

4B 5B
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
· · · · · ·

1111 11101

This helps with the problem of not having too many 0s in a row, but there is a possibility to get a bunch of 1s in
a row. So we apply NRZI to this, which breaks up long runs of 1s. Since each 4-bit string of bits is replaced with
5-bits, there is an overhead of about 20% making this 80% efficient. We can’t hope to get to 100% efficiency, but
this is better than Manchester encoding’s efficiency. 4B/5B is used in some modern systems.

Scramblers One other approach is to XOR the data with a random sequence of 0s and 1s. This is called a
scrambler. This will help break up very long runs of 0s and 1s since those are not too likely in the random
sequence. The sender and receiver both have a copy of this sequence, and the receiver can undo the scrambling
simply by XORing the random sequence. The scrambler also has the benefit of making the signal hard for
eavesdroppers to read if they don’t know the random sequence.

A few link layer details

Framing At the link layer, data is grouped into frames. An important difficulty for network adapters is
recognizing where one frame ends and the next one begins. Here are a couple of solutions to this.

1. Have the sender specify at the beginning of the frame how much stuff they are sending.

2. Use special flag bits or bytes to indicate the start and end of a frame. One issue with this is that those bits
or bytes might naturally occur in the data. To deal with this, we can “escape” those bits or bytes by
preceding them with a special sequence of bits or bytes. This is like in programming languages, when you
want to put a quote character inside a string. Since the quote indicates the end of a string, we have to be
careful. The solution is to escape it with \" as in "He said \"Hi!\" to me". The escape sequence itself
might also come up naturally in the data, so we might have to escape the escape sequence in that case. In
programming languages, this is similar to using \\ to escape the \ escape character.

Automatic repeat request (ARQ) At this layer, data will inevitably be lost or corrupted, and we need ways to
deal with how it should be resent. Here are three common ways:

1. Stop-and-Wait — In this scheme, the sender sends a frame and then waits to send anything else until it
receives an ACK from the receiver. If no ACK comes after a certain amount of time, the packet is resent.
This is simple, but not very efficient since the sender can’t send more than one frame at a time.

2. Go-Back-N — This is a sliding window system that is a lot like TCP’s sliding window system.

3. Selective repeat — This is very similar to TCP’s selective ACKs (SACK), where a receiver can specify which
frames were received and which ones were not.

