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Is it all in your imagination?
Brian Heinold



What is i?

Definition: i =
√
−1

Specifically, i is a number such that i2 = −1.

This is nonsensical. A number times itself must be positive,
right?
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What others are saying about them. . .

In 1545, Girolamo Cardano, who was the first to write about
them, called them

“as subtle as they are useless”



What others are saying about them. . .

In 1572, Rafael Bombelli, who developed the rules for working
with them, said

“The whole matter seems to rest on
sophistry rather than truth.”



What others are saying about them. . .

In 1702 Gottfried von Leibniz, co-inventor of calculus, called i

“that amphibian between existence and
nonexistence””



What others are saying about them. . .

In 1770 Leonhard Euler, arguably the greatest mathematician
of all time, wrote about

“numbers, which from their nature are
impossible; and therefore they are usually
called imaginary quantities, because they

exist merely in the imagination. . .



Euler, continued. . .

But notwithstanding this, these numbers

present themselves to the mind; they exist

in our imagination, and we still have a

sufficient idea of them.



Picturing real and imaginary numbers



Picturing complex numbers

Put the reals and imaginaries together to get C, the complex
numbers.



Picturing complex numbers

Every complex number is a combination of a real part and an
imaginary part.

Our numbers are two-dimensional now!



Working with complex numbers

Use the rules of algebra:

i2 = −1

(3 + 4i) + (6 + 3i) = 9 + 7i

(3 + 4i)× (6 + 3i) = 18 + 9i+ 24i+ 12i2 = 6 + 33i

3 + 4i

6 + 3i
=

3 + 4i

6 + 3i
· 6− 3i

6− 3i
=

30 + 12i

25
=

6

5
+

12

25
i
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Rotation

Multiplication by i corresponds to rotation by 90◦.



Rotation

In general, multiplying two complex numbers corresponds to
adding their angles and multiplying their lengths.



Applications

Complex numbers are applicable in places where rotation
naturally fits.

There are a number of such places in physics where
complex numbers considerably simplify things:

Electromagnetic field

electric portion — real part
magnetic portion — imaginary part

Electrical circuit

capacitance — real part
inductance — imaginary part



Complex numbers make many things easier

Cardano’s solution of the cubic used imaginary numbers,
even for solutions which were ultimately real.

Cauchy integral formula/residue theorem — Some difficult
real integrals can be easily computed by finding where the
function has poles in the complex plane.

Complex analysis used to prove the Prime Number
theorem (number of primes less than n is ≈ n

lnn).

Jacques Hadamard (1865-1963): “the shortest path
between two truths in the real domain passes through the
complex domain.”
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Euler’s formula

eiθ = cos θ + i sin θ

Ties together some of the most important functions in math.

“The most remarkable formula in all of math”:

eiπ + 1 = 0.
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Proof that eiθ = cos θ + i sin θ

Taylor series:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− . . .

sinx = x− x3

3!
+
x5

5!
− . . .

eix = 1 + ix+
(ix)2
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Interesting facts

eiθ = cos θ + i sin θ provides a compact way to represent
waves and oscillations.

ii = (eiπ/2)i = ei
2π/2 = e−π/2 = .2078 . . .
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Complex numbers make their presence felt on the reals

Power series for 1
1−x2 is 1 + x2 + x4 + x6 + . . . .

It is valid only if −1 < x < 1.

This is because 1
1−x2 has vertical asymptotes at ±1, which

prevent the power series from working past them.
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is 1− x2 + x4 − x6 + . . .

It is also only valid if −1 < x < 1.

But why? There’s no asymptotes.

The denominator has asymptotes at ±i
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Complex numbers make their presence felt on the reals

Power series for 1
1+x2

is 1− x2 + x4 − x6 + . . .

It is also only valid if −1 < x < 1.

But why? There’s no asymptotes.

The denominator has asymptotes at ±i



So, how can imaginary numbers be

imaginary if they have real effects?



Hyperbolic functions from calculus

sinhx =
ex − e−x

2
coshx =

ex + e−x

2

Not periodic like sinx and cosx.

But d
dx sinhx = coshx and vice-versa.

Also, they satisfy many of the same kinds of identities as
ordinary trig functions:

sinh2 x− cosh2 x = 1
sinh(2x) = 2 sinhx coshx
sinh(x+ y) = sinhx cosh y + coshx sinh y
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Complex sine and cosine

From Euler’s formula we get

sin z =
eiz − e−iz

2i
cos z =

eiz + e−iz

2

From this, we get sin z = −i sinh(iz) and cos z = cosh(iz).

In other words, sinh and cosh are periodic, just on the
imaginary axis.

On the imaginary axis, sin z and cos z behave like sinh z
and cosh z on the real axis.
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New things that we can solve

Every polynomial has a root in C

sinx = 3 −→ x =
π

2
+ i ln(3 + 2

√
2)

ln(−1) = iπ
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The complex logarithm

log z is the inverse of ez.

ez is periodic along the imaginary axis.

So, ez = −1 has infinitely many solutions: eπi, e2πi, e3πi, . . .

This means log z is actually multivalued.

This is an example of a Riemann surface
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The complex logarithm

log z is the inverse of ez.

ez is periodic along the imaginary axis.

So, ez = −1 has infinitely many solutions: eπi, e2πi, e3πi, . . .

This means log z is actually multivalued.

This is an example of a Riemann surface



Roots of unity

x2 = 1 −→ x = ±1 (2 roots, 180◦ apart on unit circle)

x4 = 1 −→ x = ±1,±i (4 roots, 90◦ apart on unit circle)



Roots of unity

What about x3 = 1?

3 roots, spaced 120◦(2π/3 rad) apart on unit circle

x = 1, cos(2πi/3) + ı sin(2πi/3), cos(4π/3) + ı sin(4π/3)

Can write as x = e2πik/3 for k = 1, 2, 3.



Roots of unity

In general, xn = 1 has n roots, spaced 2π/n rad apart

The roots are e2πik/n for k = 1, 2, . . . , n.



Using Newton’s method to find the roots of unity



Mandelbrot set



A natural question

Question: Could we add more dimensions to make different
kinds of numbers?

Answer: Yes and no. Yes we can, and we can get things
like the quaternions and octonions.

But, no, we can’t get anything as nice as C. Adding
dimensions causes you to lose nice properties like
commutativity and associativity.

So C is the largest as we can get without giving up things
we’d rather not give up.
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Are negative numbers real?

Negative numbers for millennia were considered “unreal”

Negatives don’t make sense for many things

There are -5 people in this room
I am -6 feet tall.
etc.

But they are a natural fit for many other things:

Money: credit = + , debt = -
Motion: forward = +, backwards = -
etc.
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Are fractions real?

Fractions don’t make sense for many things:

I have 2
3 sisters.

There are 17
19 books on my shelf.

etc.

But they are a natural fit for many other things:

I ate 1
3 of a pizza

I walked 2
3 of a mile

etc.
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Are imaginary numbers real?

Imaginary numbers don’t make sense for anything in
everyday life.

But they are a natural fit for many things in math and
physics (circuits, waves, . . . )

But. . .

Leopold Kronecker (late 1800s): “God created the natural
numbers; all else is the work of man.”

But then do even the natural numbers exist?

What exactly is the number 2 for instance?

My answer: Complex numbers are as real as any other kind
of number; they just don’t appear in everyday life.
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Thanks

Thank you for your attention.



Image credits

Cardano – http://en.wikipedia.org/wiki/Gerolamo_Cardano

Bombelli – http://www.learn-math.info/historyDetail.htm?id=Bombelli

Leibniz – http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Euler – http://en.wikipedia.org/wiki/Leonhard_Euler

http://en.wikipedia.org/wiki/Gerolamo_Cardano
 http://www.learn-math.info/historyDetail.htm?id=Bombelli
 http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
http://en.wikipedia.org/wiki/Leonhard_Euler

