
Using Python in a Numerical Methods Course

Brian Heinold

Department of Mathematics and Computer Science
Mount St. Mary’s University

August 6, 2016

1 /44

About the class

Mix of Math and CS students (counts as an elective for both)

Calc I prereq, most students have also had an intro
programming class

Covers floating point matters, interpolation, numerical
equation solving, numerical integration and differentiation,
numerical methods for differential equations, simulations

We’re a smallish liberal arts school, graduating about 10 total
math and CS majors a year

2 /44

About the class

Mix of Math and CS students (counts as an elective for both)

Calc I prereq, most students have also had an intro
programming class

Covers floating point matters, interpolation, numerical
equation solving, numerical integration and differentiation,
numerical methods for differential equations, simulations

We’re a smallish liberal arts school, graduating about 10 total
math and CS majors a year

3 /44

About the class

Mix of Math and CS students (counts as an elective for both)

Calc I prereq, most students have also had an intro
programming class

Covers floating point matters, interpolation, numerical
equation solving, numerical integration and differentiation,
numerical methods for differential equations, simulations

We’re a smallish liberal arts school, graduating about 10 total
math and CS majors a year

4 /44

About the class

Mix of Math and CS students (counts as an elective for both)

Calc I prereq, most students have also had an intro
programming class

Covers floating point matters, interpolation, numerical
equation solving, numerical integration and differentiation,
numerical methods for differential equations, simulations

We’re a smallish liberal arts school, graduating about 10 total
math and CS majors a year

5 /44

What is Python

General purpose programming language

In top 5 or 10 of most lists of programming languages

Popular in intro to programming courses

Used extensively in industry

You already have it if you have a Mac. Easy download on
Windows.

6 /44

What is Python

General purpose programming language

In top 5 or 10 of most lists of programming languages

Popular in intro to programming courses

Used extensively in industry

You already have it if you have a Mac. Easy download on
Windows.

7 /44

What is Python

General purpose programming language

In top 5 or 10 of most lists of programming languages

Popular in intro to programming courses

Used extensively in industry

You already have it if you have a Mac. Easy download on
Windows.

8 /44

What is Python

General purpose programming language

In top 5 or 10 of most lists of programming languages

Popular in intro to programming courses

Used extensively in industry

You already have it if you have a Mac. Easy download on
Windows.

9 /44

What is Python

General purpose programming language

In top 5 or 10 of most lists of programming languages

Popular in intro to programming courses

Used extensively in industry

You already have it if you have a Mac. Easy download on
Windows.

10 /44

Using the Python shell

Easy to show floating point gotchas:

>>> .2 + .1
0.30000000000000004

>>> "{:.50f}".format(.1))
0.10000000000000000555111512312578270211815834045410

>>> x = (1.000000000000001 - 1) * 100000000000000
0.11102230246251565

>>> s = 0
>>> for i in range(10000000):

s = s + .1
>>> s
999999.9998389754

11 /44

Using the Python shell

Easy to show floating point gotchas:

>>> .2 + .1
0.30000000000000004

>>> "{:.50f}".format(.1))
0.10000000000000000555111512312578270211815834045410

>>> x = (1.000000000000001 - 1) * 100000000000000
0.11102230246251565

>>> s = 0
>>> for i in range(10000000):

s = s + .1
>>> s
999999.9998389754

12 /44

Using the Python shell

Easy to show floating point gotchas:

>>> .2 + .1
0.30000000000000004

>>> "{:.50f}".format(.1))
0.10000000000000000555111512312578270211815834045410

>>> x = (1.000000000000001 - 1) * 100000000000000
0.11102230246251565

>>> s = 0
>>> for i in range(10000000):

s = s + .1
>>> s
999999.9998389754

13 /44

Using the Python shell

Easy to show floating point gotchas:

>>> .2 + .1
0.30000000000000004

>>> "{:.50f}".format(.1))
0.10000000000000000555111512312578270211815834045410

>>> x = (1.000000000000001 - 1) * 100000000000000
0.11102230246251565

>>> s = 0
>>> for i in range(10000000):

s = s + .1
>>> s
999999.9998389754

14 /44

Demonstration of Fixed Point Iteration

from math import cos
x = 2
for i in range(20):

x = cos(x)
print(x)

-0.4161468365471424

0.9146533258523714

0.6100652997429745

0.8196106080000903

0.6825058578960018

...

0.7394108086387853

0.7388657151407354

0.7392329180769628

15 /44

Python Is Easy to Work With

Python reads like pseudocode:

def bisection(f, a, b, n):
for i in range(n):

m = (a + b) / 2
if f(a)*f(m) < 0:

b = m
else:

a = m
return m

Can use anonymous functions passed as arguments:

bisection(lambda x:x*x-2, 0, 2, 20)

16 /44

Python Is Easy to Work With

Python reads like pseudocode:

def bisection(f, a, b, n):
for i in range(n):

m = (a + b) / 2
if f(a)*f(m) < 0:

b = m
else:

a = m
return m

Can use anonymous functions passed as arguments:

bisection(lambda x:x*x-2, 0, 2, 20)

17 /44

More Examples We Build in Class

def secant(f, a, b, toler=1e-10):
while f(b)!=0 and abs(b-a)>toler:

a, b = b, b - f(b)*(b-a)/(f(b)-f(a))
return b

def trapezoid(f, a, b, n):
dx = (b-a) / n
return dx/2 * (f(a) + f(b) +

2*sum(f(a+i*dx) for i in range(1,n)))

def euler(f, y_start, t_start, t_end, h):
t, y = t_start, y_start
ans = [(t, y)]
while t < t_end:

y += h * f(t,y)
t += h

ans.append((t,y))
return ans

18 /44

Simulating Physical Systems

from tkinter import *
from math import *

def plot():
v, y = 3, 1
h = .0005
while True:

v, y = v + h*f(y,v), y + h*v
a = 100*sin(y)
b = 100*cos(y)
canvas.coords(line, 200, 200, 200+a, 200+b)
canvas.coords(bob, 200+a-10, 200+b-10, 200+a+10, 200+b+10)
canvas.update()

f = lambda y, v: -9.8/1*sin(y)-v/10
root = Tk()
canvas = Canvas(width=400, height=400, bg='white')
canvas.grid()
line = canvas.create_line(0, 0, 0, 0, fill='black')
bob = canvas.create_oval(0, 0, 0, 0, fill='black')
plot()

19 /44

Homework

Homework usually consists of

(a) Conceptual questions
(b) Questions asking students to walk through an algorithm
(c) Choice of a few programming or trickier math problems

Many of our math majors don’t like programming.

For some problems, I give the option to use a programming
language or Excel.

For other problems, I give the choice to do a programming
problem or a mathematical problem.

20 /44

Homework

Homework usually consists of

(a) Conceptual questions
(b) Questions asking students to walk through an algorithm
(c) Choice of a few programming or trickier math problems

Many of our math majors don’t like programming.

For some problems, I give the option to use a programming
language or Excel.

For other problems, I give the choice to do a programming
problem or a mathematical problem.

21 /44

Homework

Homework usually consists of

(a) Conceptual questions
(b) Questions asking students to walk through an algorithm
(c) Choice of a few programming or trickier math problems

Many of our math majors don’t like programming.

For some problems, I give the option to use a programming
language or Excel.

For other problems, I give the choice to do a programming
problem or a mathematical problem.

22 /44

Homework

Homework usually consists of

(a) Conceptual questions
(b) Questions asking students to walk through an algorithm
(c) Choice of a few programming or trickier math problems

Many of our math majors don’t like programming.

For some problems, I give the option to use a programming
language or Excel.

For other problems, I give the choice to do a programming
problem or a mathematical problem.

23 /44

Example Exercises

Write a Python program that implements Simpson’s rule in an
a manner analogous to the program we wrote in class for the
trapezoid rule.

Modify the backward Euler program we wrote in class to
implement the implicit trapezoid method.

Modify the Python code for adaptive quadrature to build up a
list of all the points at which the algorithm evaluates the
function while doing its thing.

Modify the Adams-Bashforth two-step program on Moodle to
implement the four-step method.

24 /44

Example Exercises

Write a Python program that implements Simpson’s rule in an
a manner analogous to the program we wrote in class for the
trapezoid rule.

Modify the backward Euler program we wrote in class to
implement the implicit trapezoid method.

Modify the Python code for adaptive quadrature to build up a
list of all the points at which the algorithm evaluates the
function while doing its thing.

Modify the Adams-Bashforth two-step program on Moodle to
implement the four-step method.

25 /44

Example Exercises

Write a Python program that implements Simpson’s rule in an
a manner analogous to the program we wrote in class for the
trapezoid rule.

Modify the backward Euler program we wrote in class to
implement the implicit trapezoid method.

Modify the Python code for adaptive quadrature to build up a
list of all the points at which the algorithm evaluates the
function while doing its thing.

Modify the Adams-Bashforth two-step program on Moodle to
implement the four-step method.

26 /44

Example Exercises

Write a Python program that implements Simpson’s rule in an
a manner analogous to the program we wrote in class for the
trapezoid rule.

Modify the backward Euler program we wrote in class to
implement the implicit trapezoid method.

Modify the Python code for adaptive quadrature to build up a
list of all the points at which the algorithm evaluates the
function while doing its thing.

Modify the Adams-Bashforth two-step program on Moodle to
implement the four-step method.

27 /44

Tricky Exercises

Use the Python Decimal class, the Java BigDecimal class, or
another programming language’s decimal class to estimate the
solution of 1− 2x− x5 = 0 correct to 50 decimal places.

Use one of the numerical methods we’ve learned to write a
method in your favorite programming language called my_sqrt

that computes
p

n as accurately as the programming
language’s own sqrt function (but without using the
language’s sqrt or power functions).

Write a function that takes a sequence (a list), and returns a
new sequence gotten by applying Aitken’s ∆2 method to it.

Implement the method for estimating ln x discussed on page
33 of the notes to accurately approximate the natural log of
any positive number.

28 /44

Tricky Exercises

Use the Python Decimal class, the Java BigDecimal class, or
another programming language’s decimal class to estimate the
solution of 1− 2x− x5 = 0 correct to 50 decimal places.

Use one of the numerical methods we’ve learned to write a
method in your favorite programming language called my_sqrt

that computes
p

n as accurately as the programming
language’s own sqrt function (but without using the
language’s sqrt or power functions).

Write a function that takes a sequence (a list), and returns a
new sequence gotten by applying Aitken’s ∆2 method to it.

Implement the method for estimating ln x discussed on page
33 of the notes to accurately approximate the natural log of
any positive number.

29 /44

Tricky Exercises

Use the Python Decimal class, the Java BigDecimal class, or
another programming language’s decimal class to estimate the
solution of 1− 2x− x5 = 0 correct to 50 decimal places.

Use one of the numerical methods we’ve learned to write a
method in your favorite programming language called my_sqrt

that computes
p

n as accurately as the programming
language’s own sqrt function (but without using the
language’s sqrt or power functions).

Write a function that takes a sequence (a list), and returns a
new sequence gotten by applying Aitken’s ∆2 method to it.

Implement the method for estimating ln x discussed on page
33 of the notes to accurately approximate the natural log of
any positive number.

30 /44

Tricky Exercises

Use the Python Decimal class, the Java BigDecimal class, or
another programming language’s decimal class to estimate the
solution of 1− 2x− x5 = 0 correct to 50 decimal places.

Use one of the numerical methods we’ve learned to write a
method in your favorite programming language called my_sqrt

that computes
p

n as accurately as the programming
language’s own sqrt function (but without using the
language’s sqrt or power functions).

Write a function that takes a sequence (a list), and returns a
new sequence gotten by applying Aitken’s ∆2 method to it.

Implement the method for estimating ln x discussed on page
33 of the notes to accurately approximate the natural log of
any positive number.

31 /44

More Tricky Exercises

Write a function in a programming language that is given a
list of data points, an x-value, and uses Newton’s divided
differences to compute the value of the interpolating
polynomial at x. It’s up to you how to specify how the data
points are passed to your function, but make sure that it
works for any number of data points.

Write a program that returns the nth Chebychev polynomial,
nicely formatted as a string. For instance, cheb(5) should
return 16x^5-20x^3+5x.

Write a Python function called mc_integrate that estimates
∫ b

a

∫ d
c f(x, y)dy dx. Its arguments should include the function

f ; the bounds a, b, c, and d; and the bounds of a box enclosing
the region of integration; and an integer n specifying how
many iterations to do, having a default value of 10000.

32 /44

More Tricky Exercises

Write a function in a programming language that is given a
list of data points, an x-value, and uses Newton’s divided
differences to compute the value of the interpolating
polynomial at x. It’s up to you how to specify how the data
points are passed to your function, but make sure that it
works for any number of data points.

Write a program that returns the nth Chebychev polynomial,
nicely formatted as a string. For instance, cheb(5) should
return 16x^5-20x^3+5x.

Write a Python function called mc_integrate that estimates
∫ b

a

∫ d
c f(x, y)dy dx. Its arguments should include the function

f ; the bounds a, b, c, and d; and the bounds of a box enclosing
the region of integration; and an integer n specifying how
many iterations to do, having a default value of 10000.

33 /44

More Tricky Exercises

Write a function in a programming language that is given a
list of data points, an x-value, and uses Newton’s divided
differences to compute the value of the interpolating
polynomial at x. It’s up to you how to specify how the data
points are passed to your function, but make sure that it
works for any number of data points.

Write a program that returns the nth Chebychev polynomial,
nicely formatted as a string. For instance, cheb(5) should
return 16x^5-20x^3+5x.

Write a Python function called mc_integrate that estimates
∫ b

a

∫ d
c f(x, y)dy dx. Its arguments should include the function

f ; the bounds a, b, c, and d; and the bounds of a box enclosing
the region of integration; and an integer n specifying how
many iterations to do, having a default value of 10000.

34 /44

Project Ideas

Write a program that allows the user to specify control points
for Bézier curves by clicking and dragging and draws the
Bézier curve determined by those points.

Write a program that allows the user to add data points for
interpolation and then draws the interpolating polynomial
through those points.

Write a program that simulates a physical system, like the
pendulum programs we worked on in class. The program
should graphically display the motion of the system.

Simulations (graphical traffic flow, spread of disease, . . .)

Various non-programming ones involve writing a paper,
comparing methods, . . .

35 /44

Project Ideas

Write a program that allows the user to specify control points
for Bézier curves by clicking and dragging and draws the
Bézier curve determined by those points.

Write a program that allows the user to add data points for
interpolation and then draws the interpolating polynomial
through those points.

Write a program that simulates a physical system, like the
pendulum programs we worked on in class. The program
should graphically display the motion of the system.

Simulations (graphical traffic flow, spread of disease, . . .)

Various non-programming ones involve writing a paper,
comparing methods, . . .

36 /44

Project Ideas

Write a program that allows the user to specify control points
for Bézier curves by clicking and dragging and draws the
Bézier curve determined by those points.

Write a program that allows the user to add data points for
interpolation and then draws the interpolating polynomial
through those points.

Write a program that simulates a physical system, like the
pendulum programs we worked on in class. The program
should graphically display the motion of the system.

Simulations (graphical traffic flow, spread of disease, . . .)

Various non-programming ones involve writing a paper,
comparing methods, . . .

37 /44

Project Ideas

Write a program that allows the user to specify control points
for Bézier curves by clicking and dragging and draws the
Bézier curve determined by those points.

Write a program that allows the user to add data points for
interpolation and then draws the interpolating polynomial
through those points.

Write a program that simulates a physical system, like the
pendulum programs we worked on in class. The program
should graphically display the motion of the system.

Simulations (graphical traffic flow, spread of disease, . . .)

Various non-programming ones involve writing a paper,
comparing methods, . . .

38 /44

Screenshot from a Student Project

39 /44

Diff Eq Plotter I Wrote for Class

40 /44

Magic

class Dual:
def __init__(self, a, b):

self.a = a
self.b = b

def __add__(self, y):
if type(y) == int or type(y) == float:

return Dual(self.a + y, self.b)
else:

return Dual(y.a+self.a, y.b+self.b)

def __mul__(self, y):
if type(y) == int or type(y) == float:

return Dual(self.a*y, self.b*y)
else:

return Dual(y.a*self.a, y.b*self.a + y.a*self.b)

def __pow__(self, e):
return Dual(self.a ** e, self.b*e*self.a ** (e-1))

various other operator definitions omitted...

41 /44

Magic, continued

def create_func(f, deriv):
return lambda D: Dual(f(D.a), D.b*deriv(D.a))\

if type(D)==Dual else f(D)

def autoderiv(s, x):
f = eval('lambda x: ' + s.replace("^", "**"))
return (f(Dual(x,1))-f(Dual(x,0))).b

sin = create_func(math.sin, math.cos)
exp = create_func(math.exp, math.exp)
various other function defs omitted...

print(autoderiv("sin(x^2+exp(x+1))", 2))

This is called automatic differentiation.

Results are always accurate to within machine ε!

42 /44

Magic, continued

def create_func(f, deriv):
return lambda D: Dual(f(D.a), D.b*deriv(D.a))\

if type(D)==Dual else f(D)

def autoderiv(s, x):
f = eval('lambda x: ' + s.replace("^", "**"))
return (f(Dual(x,1))-f(Dual(x,0))).b

sin = create_func(math.sin, math.cos)
exp = create_func(math.exp, math.exp)
various other function defs omitted...

print(autoderiv("sin(x^2+exp(x+1))", 2))

This is called automatic differentiation.

Results are always accurate to within machine ε!

43 /44

Thanks!

See www.brianheinold.net these slides.

44 /44

www.brianheinold.net

