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A little history

e Circa 1999 wanted to draw Mandelbrot set
o Had some programming experience

e What about other formulas?
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Part of the program I wrote

pflall]].left = LEFT_END;
if (pflll.fa_loc =1) // special case if there is only one item in the formula
pflal01].right = RIGHT_END;
else
{
for (i = 0; pflit+l]l.fa_loc != -1; i++)
{
if (form arr[i].pri == FUNCTION && func[form arr([i].buffer loc].num arg > 1)
{
/* scan right, if we fall off the edge of the formula or if we reach the end
of the function call without finding a comma at the next paren level up,

then return an er othe. se set the right field accordingly */
if (form arr[i+l].pri PARENTHESIS)
return ©;
for (j = i+2; pfljl.fa loc !'= -1 &&
form_arr[jl.paren level > form arr[i].paren level &&
! (form arr[j].pri == COMMA && form arr[j].paren_level == form arr[il.pare

if (form arr[jl.paren level > form arr[i].paren_ level)

PARENTHESIS; k--) {}

for (k = j-1; k>J && form arr[k].pri ==
=) 7 =L ¢kl

pflalill.right = al(pflk]l.fa_loc ==
}

else
return ©;
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| The first image I generated




Complex numbers

i = +/—1 (solution to 22 + 1 = 0)

Examples: 2i, 3+4i, —.24 .76¢

Addition: (24 3i) + (5+8i) =7+ 114

Multiplication: (2 + 37)(5 + 8i) = 10 + 317 + 2442 = —14 + 31i

Division:

243 _ 2430 5-8i _ 34-8i _ 34 4 8,
548i  5+8 5-8 89 80 ' 89
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Picturing them

pd I ~

R < l - 7
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N z=x+1y
|.':| = \/;r.2+y2
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Polar representation

x 4 iy «— re'?
AN z=1T+1y
.
Y
yd o b
< . 7
N
21 = 1101, 29 = e

= 2129 = T1T2€i(01+62) (a rotation and a dilation)
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Example: Let f(z) = 2% and start with x = 2.

f(2) =4

f(4) =16
£(16) = 256
£(256) = 65536

Iterates are approaching co.
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A different starting point

Let f(z) = 2% and start with x =

fG) =1
() =15
f(%6> - 2%6
f(flﬁ) - 65%36

Iterates are approaching 0.
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Another example

f)=-1
f(=1) =1
) =-1
f(=1) =1

Iterates are not settling down on a value.
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Coloring by convergence

Color each point according to how fast it converges.

Count how many iterations until two successive values are
within .00001 of each other.

Assign each count a color.

Convergence to infinity is still convergence (color by # of steps
to exceed +10°).
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Iteration with complex numbers

Plug z = x + iy into f(z). Get a value, and plug that value into
the function. Then plug the result of that into the function, etc.
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The process

Look at all the possible starting values in a region.

For each starting point, iterate the function.

If two successive values are within .00001 of each other, there’s
a very good chance that the iterates will converge.
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The process, continued

In this case, color the point with a color representing how long
it took for this to happen.

It is possible that the iteration may never stop. Give up after a
few hundred iterations and color the point yellow.

Note: convergence to infinity is still convergence (color by how
many steps for iteration to exceed £10°).
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‘ Color scheme
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A fractal from Newton’s method

o Newton’s method is useful for estimating the roots of a
function.
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A fractal from Newton’s method

o Newton’s method is useful for estimating the roots of a
function.

o Let’s try it on f(z) = 2° — 1.
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A fractal from Newton’s method

o Newton’s method is useful for estimating the roots of a
function.

o Let’s try it on f(z) = 2° — 1.

f(@)

o Iterate x — @)
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A fractal from Newton’s method

o Newton’s method is useful for estimating the roots of a
function.
o Let’s try it on f(z) = 2° — 1.
_ f@)
o Jterate x UOR
e So, we iterate z — ‘C;;l
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A fractal from Newton’s method

o Newton’s method is useful for estimating the roots of a
function.
o Let’s try it on f(z) = 2° — 1.
_ f@)
o Jterate x UOR
e So, we iterate z — ‘C;;l

We do know the roots already: x = 1 is the only real root.
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A fractal from Newton’s method

(]

Newton’s method is useful for estimating the roots of a
function.

Let’s try it on f(z) = 2% — 1.

_ f(=)
o Jterate x UOR

(]

z5-1
5x4 °

(]

So, we iterate x —

We do know the roots already: x = 1 is the only real root.

(]

All of them: 005(27”) —|—zsm(2m) fori=0,1,2,3,4.
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Number of iterations

Demo time!
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=
Newton’s method on z° — 1

x5—1
54

o Iterating x — to find roots.
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=
Newton’s method on z° — 1

x5—1
54

o The starting value matters.

o Iterating x — to find roots.
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=
Newton’s method on z° — 1

o Iterating x — ’”;;11 to find roots.

o The starting value matters.
o x=1.5:1.24,1.08, 1.01, 1.001994, 1.0000000795
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=
Newton’s method on z° — 1

o Iterating x — ’”;;11 to find roots.

o The starting value matters.

o x=1.5:1.24,1.08, 1.01, 1.001994, 1.0000000795

o x =4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008
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=
Newton’s method on z° — 1

o Iterating x — ’”;;11 to find roots.

o The starting value matters.
o x=1.5:1.24,1.08, 1.01, 1.001994, 1.0000000795

o x =4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

e x = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039
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=
Newton’s method on z° — 1

o Iterating x — ’”;;11 to find roots.

o The starting value matters.

o x=1.5:1.24,1.08, 1.01, 1.001994, 1.0000000795

o x =4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

e x =10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

e x =.1: 2000, 1600, 1280, 1024, [33 more iterations...],
1.000956, 1.0000018
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=
Newton’s method on z° — 1

o Iterating x — ’”;;11 to find roots.

o The starting value matters.
o x=1.5:1.24,1.08, 1.01, 1.001994, 1.0000000795

o x =4: 3.20, 2.56, 2.05, 1.65, 1.35, 1.14, 1.03, 1.002,
1.000006, 1.00000000008

z = 10: 8.00, 6.40, 5.12, 4.10, 3.28, 2.62, 2.10, 1.69, 1.38,
1.16, 1.04, 1.00264, 1.0000140, 1.00000000039

x = .1: 2000, 1600, 1280, 1024, [33 more iterations...],
1.000956, 1.0000018

o Negatives are funny. The number of iterations to get
within 10~° of root at 1:
r = —1: 5 iterations
= —1.11: 89 iterations
= —1.5: 28 iterations
= —2: 16 iterations
—3: 28 iterations

8 8 8 8
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Let’s graph this

A plot of how many iterations before convergence.
Darker = less, yellow means > 50

-5 0
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What about the complex roots?

e Try a complex starting value: z = 0.2 + 0.8::
Takes 4 iterations

0.401 + 0.999:
0.327 4 0.948:
0.309 + 0.9501
0.30901699437494745 + 0.95105651629515357

This finds cos ( ) + sin (25”) 7.
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What about the complex roots?

e Try a complex starting value: z = 0.2 + 0.8::
Takes 4 iterations

0.401 + 0.999:
0.327 4 0.948:
0.309 + 0.9501
0.30901699437494745 + 0.95105651629515357

This finds cos ( ) + sin (25”) 7.

@ On the other hand, .573 + .467 takes 41 iterations.
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Let’s graph it.
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Fractal structure

Demo time!
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Fractal structure
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Fractal structure
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What’s happening?

o Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.
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What’s happening?

o Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

o Iterates pulled towards them.
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What’s happening?

o Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

o Iterates pulled towards them.

e Sometimes a fight breaks out between two roots, and
sometimes they both lose.
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What’s happening?

o Newton’s method is a type of fixed point iteration. The
roots are the fixed points and are attracting.

o Iterates pulled towards them.

e Sometimes a fight breaks out between two roots, and
sometimes they both lose.

@ The next picture shows what root each starting point is
attracted to.
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Coloring by root
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Demo time!
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A particular orbit
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f(z) = 2¢ — 1 in general

e What about f(z) = 2 — 1 for other values of ¢?
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f(z) = 2¢ — 1 in general

e What about f(z) = 2 — 1 for other values of ¢?

e Want a sense for what to expect without having to try too
many values.
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f(z) = 2¢ — 1 in general

e What about f(z) = 2 — 1 for other values of ¢?

e Want a sense for what to expect without having to try too
many values.

@ Need the idea of an indezx set.
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f(z) = 2¢ — 1 in general

What about f(z) = 2¢ — 1 for other values of ¢?

e Want a sense for what to expect without having to try too
many values.

@ Need the idea of an indezx set.

o For each value of ¢, imagine doing the plot but using a
single point on the plot to represent the entire picture.
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f(z) = 2¢ — 1 in general

What about f(z) = 2¢ — 1 for other values of ¢?

e Want a sense for what to expect without having to try too
many values.

@ Need the idea of an indezx set.

o For each value of ¢, imagine doing the plot but using a
single point on the plot to represent the entire picture.

We'll use z = —1 as the representative point.
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Newton index set

Demo time!
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\ Newton, ¢ ~ —5.4 + 1.5¢

LG
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The complex logarithm

Inz=In|z| +iargz

Take branch where —7 < argz < 7.

Frés it HEL B/ Favvnm answird £0m/ b pic  Branc - paint
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Complex exponentiation

e lnz=In|z|+iargz
o et = e = e%(cosy + isiny)

cln(z)

@ Z-=¢
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f(2) = ¢sin (In 2)

sin (z + iy) = sinz coshy + i cos z sinh y
Inz=In|z| +iargz

Different values of ¢ produce wildly different pictures.
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csin(In z), ¢ = .01 + .99¢

i3




csin(lnz), c= —1+ 2.25¢
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| csin (Inz), c =2.29 — 6.55;
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Index set for csin (In z)

©
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An interesting piecewise function

Call it v(2).
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f(2) = 21(2)

Given z = re', f(z) is described by

r—=2r, 0— 0+45° center box
r, 0 constant strips
r,0—0 elsewhere
0 constant [
constant V2, 45° constant
0 Constant 0
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Demo time!
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c=1.1

f(2) is described by:

(1.13/2, 45°) center box
(1.1, 0°) strips
(0, 0°), elsewhere

In the outside strips, the small dilation leads to slow
convergence. Points within the square eventually get pushed
into the outside strips.
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Demo time!
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 c=1.1+ .01

Adding a small imaginary term adds a bit of rotation, but no
major change.
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f(2) is described by

(v/2, 90°) center box
(1, 45°)  strips
(0, 0°), elsewhere
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Where the green boxes and diamonds come from:
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Demo time!
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¢ =.700 + .709i
Move from ¢ ~ .707 + .707% to .700 + .709s.
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¢ = .700 + .709;

The red circles are the actual iterates. Rotation is not quite
45°. The slight perturbation adds up.
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¢ = .926 + .3813




¢ = .926 + .3843
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| ¢ = .655+ .653i
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c = .561 + .667:




¢ = .752 + 5163
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¢ = .870 + .5043
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f(2) is described by

(v/2, 75°) center box
(1, 30°)  strips
(0, 0°), elsewhere
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‘ Index set

For each value of ¢, see what color we get when we iterate
starting at z = 1.
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Demo time!
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" Index set close-up

Color of z =1 is somewhat representative of the entire image.
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c=.337+ .1511
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c = .584 + .287i

95 /196



c = .381 + .683¢

L
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c=.1139 4 .271:
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c = .854 + .4651
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Things to try

o Other piecewise functions
e Change z to 22 or something else

o Other types of transformations
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Here follows a gallery of some interesting pictures.
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| f(z) = 2° c=—1.09 + .197
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ In (sin z)
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¢ - sin (In (sin (In 2)))

112 /196



¢ - sin (In (sin (In 2)))
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¢ In (cos 2)
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c-In(cosz




¢ In (cscz)
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¢ In (cscz)
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‘ ¢-lnz*

118 /196



‘ c¢-ln 22
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‘ c¢-lIn 23
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‘ ¢-In z*
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c-In(z-sinz)
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‘ c-In(z-sinz)
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‘ c-In(z-sinz)




‘ c-In(z-sinz)
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¢ In(cos (2 + ¢))
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c-sec(1/2?)
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c-csc(l/z)
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- sec (cz)
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|2/(cos (¢ - sin z))|
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| Re(z/(cos (c-sin z)))
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Some unusual functions

“absn” function: absn(z) = |z| + iIm(z)
“floor” function: floor(z + iy) = floor(x) + i - floor(y)

“and” function: (x + iy)&(a + ib) = (z&a) + i(y&b)
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- absn(22) 4 i - absn(1/z) + ¢
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| absn(z — (2¢ —1)/(cz™1))
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floor(cz)
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- cfloor(sec(2))
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‘ c(x% Re(sin(z)) + iy% Im(sin(z)))
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‘ c(x% Re(sin(z)) + iy% Im(sin(z)))
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c((x&y) - (x <0)+ 2z - (x > 0))




c((z&y) - (x <0)+ z- (z > 0))




- c(floor(2) - (x> 0) + ceil(z2) - (z < 0))




¢ - floor(csc z sec z)
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flz +iy) = (z + iy)(x(-11)(z) + (&y)), c = .76 — .53i
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Define

Iterating the floor function

F(z)=

|z] +ily|, where z =z + iy.
We will be iterating cF'(z) for various values of the constant c.

= 9ac
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c= .6+ .01




c= .6+ .02




‘ c = .6+ .02¢ false color
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c= .6+ .03




c=.6+ .1t




¢ = .6 4 .12 sharper gradient
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o= 6+.3 sharper gradient
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¢ = .51 + .56i




c=.944 .0%
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¢ = .96 + .06
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c= .99+ .01z
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c=1.14

169 / 196



| c=1.144+ 044
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| c=1.13+ .1i
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 c=1.12+ 244
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| c=1.074+ 414
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| c=1.02+ .5
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c= .91+ .69
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| c= 84+ .78
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| c= .81+ .81

177 /196



c=.04+1.04:
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 c= 684 .77
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Index set

Look at what happens to the point 50 4+ 50¢ under iteration for
various values of c.
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Inside unit circle vs outside

N

4

.65+.65i (inside) .75+.75i (outside)
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Inside unit circle vs outside

& -

.91+.31i (inside) 1+.34i (outside)
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Outside the unit circle

Outside: Iterates attracted to oo.

Iteration determined by relatively simple interaction between:
e Rotation from multiplying by complex values of ¢
e Floor function

o The norm used. Iterates “converge” to oo when |z| > 10°
or |y| > 10%. Using the Euclidean norm removes all
interesting behavior.
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Inside the unit circle

Inside: Iterates attracted to various fixed points.

Iteration determined by
e Rotation from multiplying by complex values of ¢

o Floor function
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Closer look at ¢ = .6

Nine fixed points: all the points of
{-1.2,—-.6,0} x {-1.2,—.6,0}

[m]

Box n = {points mapping to fixed point in n iterations}

=



Closer look at ¢ = .6 + .14
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‘ Closer look at ¢ = .6 + .17 in false color
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Fixed points when ¢ = .6 + .12

Fixed points:
(.1,—.6),(—.5,—.7),(.2,-1.2),(0,0), (—-1.1,—.8),(—.4,—1.3)
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Slanted grid for ¢ = .6 + .14

All iterates constrained to move along slanted grid (slopes 1/6
and -6).
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Slanted grid for ¢ = .6 + .14

Interaction between rectangular grid induced by floor and
slanted grid induced by complex multiplication

Can describe this iteration purely in terms of rotations,
dilations, and “snapping to the grid.”
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Closer look at ¢ = .43 + .23:

Each colored segment is a “copy” of one before it, becoming
more complex in a fractal-like way.
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| c= 43+ .23i

= 9ac
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‘ c = .43 + .231 false color
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Far zoom out of a section from ¢ = .43 + .231
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c = .78 + .147 sharper gradient
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c = .64 + .347 sharper gradient
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